16 research outputs found

    Role of Nuclear Angiotensin-II Receptor Mediated Signalling in Cardiovascular Remodelling

    Get PDF
    Le remodelage cardiaque est le processus par lequel la structure ou la fonction cardiaque change en rĂ©ponse Ă  un dĂ©sĂ©quilibre pathophysiologique tel qu'une maladie cardiaque, un contexte d'arythmie prolongĂ©e ou une modification de l'Ă©quilibre hormonal. Le systĂšme rĂ©nine-angiotensine (SRA) est un systĂšme hormonal largement Ă©tudiĂ© et il est impliquĂ© dans de nombreuses activitĂ©s associĂ©es au remodelage cardiovasculaire. L’existence d'un systĂšme circulatoire couplĂ© Ă  un systĂšme de tissus locaux est une reprĂ©sentation classique, cependant de nouvelles donnĂ©es suggĂšrent un SRA indĂ©pendant et fonctionnellement actif Ă  l'Ă©chelle cellulaire. La comprĂ©hension de l'activitĂ© intracellulaire du SRA pourrait mener Ă  de nouvelles pistes thĂ©rapeutiques qui pourraient prĂ©venir un remodelage cardiovasculaire dĂ©favorable. L'objectif de cette thĂšse Ă©tait d'Ă©lucider le rĂŽle du SRA intracellulaire dans les cellules cardiaques. RĂ©cemment, les rĂ©cepteurs couplĂ©s aux protĂ©ines G (RCPG), les protĂ©ines G et leurs effecteurs ont Ă©tĂ© dĂ©tectĂ©s sur des membranes intracellulaires, y compris sur la membrane nuclĂ©aire, et les concepts de RCPG intracellulaires fonctionnels sont en voie d'ĂȘtre acceptĂ©s comme une rĂ©alitĂ©. Nous avons dĂšs lors fait l'hypothĂšse que la signalisation du SRA dĂ©limitant le noyau Ă©tait impliquĂ©e dans le contrĂŽle de l'expression des gĂšnes cardiaques. Nous avons dĂ©montrĂ© la prĂ©sence de rĂ©cepteurs d'angiotensine de type-1 (AT1R) et de type-2 (AT2R) nuclĂ©aires dans les cardiomyocytes ventriculaires adultes et dans une fraction nuclĂ©aire purifiĂ©e de tissu cardiaque. Des quantitĂ©s d'Ang II ont Ă©tĂ© dĂ©tectĂ©es dans du lysat de cardiomyocytes et des microinjections d'Ang-II-FITC ont donnĂ© lieu Ă  des liaisons prĂ©fĂ©rentielles aux sites nuclĂ©aires. L'analyse transcriptionnelle prouve que la synthĂšse d'ARN de novo dans des noyaux isolĂ©s stimulĂ©s Ă  l'Ang-II, et l'expression des ARNm de NF-ÎșB Ă©taient beaucoup plus importants lorsque les noyaux Ă©taient exposĂ©s Ă  de l'Ang II par rapport aux cardiomyocytes intacts. La stimulation des AT1R nuclĂ©aires a engendrĂ© une mobilisation de Ca2+ via les rĂ©cepteurs de l'inositol trisphosphate (IP3R), et le blocage des IP3R a diminuĂ© la rĂ©ponse transcriptionnelle. Les mĂ©thodes disponibles actuellement pour l'Ă©tude de la signalisation intracrine sont limitĂ©es aux mĂ©thodes indirectes. L'un des objectifs de cette thĂšse Ă©tait de synthĂ©tiser et caractĂ©riser des analogues d'Ang-II cellule-permĂ©ants afin d’étudier spĂ©cifiquement dans les cellules intactes l'activitĂ© intracellulaire du SRA. Nous avons synthĂ©tisĂ© et caractĂ©risĂ© pharmacologiquement des analogues photosensibles Ang-II encapsulĂ©e en incorporant un groupement 4,5-dimĂ©thoxy-2-nitrobenzyl (DMNB) photoclivable sur les sites actifs identifiĂ©s du peptide. Chacun des trois analogues d'Ang II encapsulĂ©e synthĂ©tisĂ©s et purifiĂ©s: [Tyr(DMNB)4]Ang-II, Ang-II-ODMNB et [Tyr(DMNB)4]Ang-II-ODMNB a montrĂ© une rĂ©duction par un facteur deux ou trois de l'affinitĂ© de liaison envers AT1R et AT2R dans les dosages par liaison compĂ©titive et une activitĂ© rĂ©duite dans la contraction de l'aorte thoracique. La photostimulation de [Tyr(DMNB)4]Ang-II dans des cellules HEK a augmentĂ© la phosphorylation d'ERK1/2 (via AT1R) et la production de cGMP (via AT2R) alors que dans les cardiomyocytes isolĂ©s elle gĂ©nĂ©rait une augmentation de Ca2+ nuclĂ©oplasmique et initiait la synthĂšse d'ARNr 18S et d'ARNm du NF-ÎșB. Les fibroblastes sont les principaux gĂ©nĂ©rateurs de remodelage cardiaque structurel, et les fibroblastes auriculaires sont plus rĂ©actifs aux stimuli profibrotiques que les fibroblastes ventriculaires. Nous avons Ă©mis l'hypothĂšse que l’Ang-II intracellulaire et l'activation des AT1R et AT2R nuclĂ©aires associĂ©s contrĂŽlaient les profils d'expression des gĂšnes des fibroblastes via des systĂšmes de signalisation distincts et de ce fait jouaient un rĂŽle majeur dans le dĂ©veloppement de la fibrose cardiaque. Nous avons remarquĂ© que les fibroblastes auriculaires expriment l’AT1R et l’AT2R nuclĂ©aire et l'Ang-II au niveau intracellulaire. L’expression d'AT1R nuclĂ©aire a Ă©tĂ© rĂ©gulĂ©s positivement dans les cas d’insuffisance cardiaque (IC), tandis que l'AT2R nuclĂ©aire a Ă©tĂ© glycosylĂ© post-traductionnellement. La machinerie protĂ©ique des protĂ©ines G, y compris Gαq/11, Gαi/3, et GÎČ, a Ă©tĂ© observĂ©e dans des noyaux isolĂ©s de fibroblastes. AT1R et AT2R rĂ©gulent l'initiation de la transcription du fibroblaste via les voies de transduction de signal d'IP3R et du NO. La photostimulation de [Tyr(DMNB)4]Ang-II dans une culture de fibroblastes auriculaire dĂ©clenche la libĂ©ration de Ca2+ nuclĂ©oplasmique, la prolifĂ©ration, et la synthĂšse et sĂ©crĂ©tion de collagĂšne qui ne sont pas inhibĂ©es par les bloqueurs d'AT1R et/ou AT2R extracellulaires.Cardiac remodelling is the process by which cardiac structure and/or function change in response to pathophysiological imbalances such as hypertension, cardiac disease, prolonged arrhythmia or altered hormonal balance. The renin-angiotensin system (RAS) is an extensively studied hormonal system involved in numerous processes associated with cardiovascular remodelling. Classically viewed as a circulating and a local tissue system, emerging evidence suggests an independent and functionally active RAS within individual cells. Understanding intracellular RAS actions might lead to new therapeutic avenues that could prevent adverse cardiac remodelling. The purpose of this thesis was to elucidate the role of intracellular RAS in cardiac cells. Recently, G protein-coupled receptors (GPCRs), G proteins, and their downstream effectors have been detected on intracellular membranes, including the nuclear membrane, and the concept of functional intracellular GPCRs is slowly being accepted as a reality. We therefore hypothesized that nuclear-delimited angiotensin II (Ang-II) signalling is involved in controlling cardiac gene expression. We demonstrated the presence of nuclear angiotensin-type 1 (AT1R) and angiotensin-type 2 (AT2R) receptors in adult ventricular cardiomyocytes and in a purified nuclear preparation from cardiac tissue. Ang-II was detected in cardiomyocyte lysate and microinjected Ang-II-FITC preferentially bound to nuclear sites. Transcriptional analysis demonstrated that Ang-II enhanced de novo RNA synthesis in isolated nuclei and NF-ÎșB mRNA expression was much greater when nuclei were exposed to Ang-II. Nuclear AT1R-stimulation produced Ca2+ mobilization via nuclear inositol 1,4,5-trisphosphate receptor (IP3R) Ca2+-channels, and IP3R-blockade attenuated the AT1R-mediated transcriptional responses in isolated nuclei. Current methods available to study intracrine RAS signalling are limited to indirect methodologies because of a lack of selective intracellularly-acting probes. An aim of this thesis was to synthesize and characterize cell-permeant Ang-II analogues to probe intracellular RAS action with spatial and temporal precision. Using solid-phase peptide technology we synthesized and pharmacologically characterized light-sensitive caged Ang-II analogues. This was achieved by incorporating a photocleavable 4,5-dimethoxy-2-nitrobenzyl (DMNB) moiety on sites of Ang-II responsible for receptor recognition and activation. All of the three synthesized and purified caged-Ang-II analogues: [Tyr(DMNB)4]Ang-II, Ang-II-ODMNB and [Tyr(DMNB)4]Ang-II-ODMNB, showed two-to-three orders of magnitude reduced binding affinity towards the AT1R and AT2R in competition binding assays and reduced potency in contraction assays using thoracic aorta. Photolysis of [Tyr(DMNB)4]Ang-II in HEK cells increased ERK1/2 phosphorylation (via AT1R) and cGMP production (via AT2R) whereas in isolated cardiomyocytes it induced an increase in nucleoplasmic Ca2+ and increased the abundance of 18S rRNA and NF-ÎșB mRNA. Fibroblasts are the main drivers of cardiac structural remodelling. Atrial fibroblasts are more responsive to pro-fibrotic stimuli than ventricular fibroblasts. We hypothesized that intracellular Ang-II and associated nuclear AT1R and AT2R activation control fibroblast gene-expression patterns via discrete signalling systems and thereby play a key role in cardiac fibrosis. Atrial fibroblasts were found to express Ang-II, and nuclear AT1R and AT2R. The nuclear localisation of AT1R was increased in fibroblasts isolated from failing hearts whereas nuclear AT2R showed alterations in glycosylation. Heterotrimeric G protein subunits including Gαq/11, Gαi/3, and GÎČ were observed in isolated fibroblast nuclei. AT1R and AT2R increased fibroblast transcription initiation via IP3R and NO signal transduction pathways, respectively. Photolysis of [Tyr(DMNB)4]Ang-II in cultured atrial fibroblasts induced an increase in nucleoplasmic Ca2+, proliferation, collagen synthesis and secretion that was not prevented by extracellular AT1R and/or AT2R blockers

    Les récepteurs intracellulaires de l'angiotensine II : nouvelles cibles thérapeutiques pour le remodelage cardiaque

    Full text link
    L'angiotensine-II (Ang-II), synthĂ©tisĂ©e Ă  partir de sources extracardiaques et intracardiaques, rĂ©gule l'homĂ©ostasie cardiaque en favorisant des effets mitogĂ©niques et en promouvant la croissance cellulaire rĂ©sultant d’une altĂ©ration de l'expression gĂ©nique. Dans cette Ă©tude, nous avons Ă©valuĂ© la possibilitĂ© que les rĂ©cepteurs de l'angiotensine-1 (AT1) ou les rĂ©cepteurs de l'angiotensine-2 (AT2) situĂ©s sur l'enveloppe nuclĂ©aire rĂ©gulent l’expression gĂ©nique des cardiomyocytes. En analysant les noyaux cellulaires retenus des fractions de cƓur de rat par immunobuvardage Western, nous avons dĂ©tectĂ© une co-purification prĂ©fĂ©rentielle des protĂ©ines AT1 et AT2 avec un marqueur de la membrane nuclĂ©aire (Nup 62), par rapport aux marqueurs de la membrane plasmique (Calpactin I), de l’appareil de Golgi (GRP 78) ou du rĂ©ticulum endoplasmique (GM130). La microscopie confocale a permis de dĂ©montrer la prĂ©sence des AT1 et AT2 dans les membranes nuclĂ©aires. La microinjection de l’Ang-II-FITC sur des cardiomyocytes a provoquĂ© une liaison de prĂ©fĂ©rence aux sites nuclĂ©aires. Les enregistrements de transients calciques ont illustrĂ© que les AT1 nuclĂ©aires rĂ©gulent le relĂąchement du Ca2+. L’incubation des ligands spĂ©cifiques d’AT1 et d’AT2 avec l’UTP [α32P] a rĂ©sultĂ© en une synthĂšse de novo d’ARN (par exemple, 16,9 ± 0,5 cpm/ng ADN contrĂŽle vs 162,4 ± 29,7 cpm/ng ADN-Ang II, 219,4 ± 8,2 cpm/ng ADN L -162313 (AT1) et 126,5 ± 8,7 cpm/ng ADN CGP42112A (AT2), P <0,001). L’incubation des noyaux avec Ang-II augmente de façon significative l’expression de NFÎșB, une rĂ©ponse qui est rĂ©primĂ©e partiellement par la co-administration de valsartan ou de PD123177. Les expĂ©riences dose-rĂ©ponse avec Ang-II administrĂ©e Ă  l'ensemble des noyaux purifiĂ©s vs. aux cardiomyocytes seuls a montrĂ© une augmentation plus importante dans les niveaux d'ARNm de NFÎșB avec une affinitĂ© de ~ 3 fois plus grande (valeurs d’EC50 = 9 contre 28 pmol/L, respectivement), suggĂ©rant un rĂŽle prĂ©fĂ©rentiel nuclĂ©aire dans la signalisation. Par consĂ©quent, nous avons conclu que les membranes cardiaques nuclĂ©aires possĂšdent des rĂ©cepteurs d’Ang-II couplĂ©s Ă  des voies de signalisation et Ă  la transcription gĂ©nique. La signalisation nuclĂ©aire pourrait jouer un rĂŽle clĂ© dans les changements de l'expression de gĂšnes cardiaques, entraĂźnant ainsi des implications mĂ©canistiques et thĂ©rapeutiques diverses.Angiotensin-II (Ang-II) from extracardiac sources and intracardiac synthesis regulates cardiac homeostasis, with mitogenic and growth-promoting effects largely due to altered gene-expression. In this study, the possibility that angiotensin-1 (AT1R) or angiotensin-2 (AT2R) receptors are located on the nuclear envelope and mediate effects on cardiomyocyte gene expression was assessed. Western blot tests of nucleus-enriched rat heart fractions indicated the presence of AT1R and AT2R proteins that preferentially copurified with a nuclear membrane marker (Nup 62) but not markers of plasma (Calpactin I), Golgi apparatus (GRP 78) or endoplasmic reticulum (GM130) membranes. Confocal microscopy revealed the existence of AT1R and AT2R proteins on nuclear membranes. Microinjected Ang-II preferentially bound to nuclear sites of isolated cardiomyocytes. Ca2+i-recordings on nuclear preparations demonstrated an AT1R-mediated Ca2+ release. AT1R and AT2R ligands enhanced de novo RNA synthesis in isolated cardiomyocyte nuclei incubated with [α32P]UTP (e.g. 16.9 ± 0.5 cpm/ng for DNA control vs. 162.4 ± 29.7 cpm/ng for DNA Ang-II, 219.4 ± 8.2 cpm/ng for DNA L-162313 (AT1) and 126.5 ± 8.7 cpm/ng for DNA CGP42112A (AT2), P<0.001). Ang-II application to isolated cardiomyocyte nuclei enhanced NFÎșB mRNA-expression, a response that was suppressed by co-administration of valsartan or PD123177. Dose-response experiments with Ang-II applied to purified nuclei vs. to whole cardiomyocytes showed a greater increase in NFÎșB mRNA levels at saturating concentrations with ~3 fold greater affinity (EC50 values 9 vs. 28 pmol/L, respectively), suggesting preferential nuclear signaling. These results lead us to conclude that cardiac nuclear membranes possess angiotensin receptors that couple to nuclear signaling pathways and regulate transcription. Signaling within the nuclear envelope (e.g. from intracellularly synthesized Ang-II) may play a role in Ang-II-mediated changes in cardiac gene-expression, with potentially important mechanistic and therapeutic implications

    Angiotensin II type 1 receptor antagonists in the treatment of hypertension in elderly patients: focus on patient outcomes

    No full text
    Artavazd Tadevosyan1, Eric J MacLaughlin2, Vardan T Karamyan31Departments of Medicine, Montreal Heart Institute and Universit&amp;eacute; de Montr&amp;eacute;al, Montreal, QC, Canada; 2Department of Pharmacy Practice, 3Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USAAbstract: Hypertension in the elderly is one of the main risk factors of cardiovascular and cerebrovascular diseases. Knowledge regarding the mechanisms of hypertension and specific considerations in managing hypertensive elderly through pharmacological intervention(s) is fundamental to improving clinical outcomes. Recent clinical studies in the elderly have provided evidence that angiotensin II type 1 (AT1) receptor antagonists can improve clinical outcomes to a similar or, in certain populations, an even greater extent than other classical arterial blood pressure-lowering agents. This newer class of antihypertensive agents presents several benefits, including potential for improved adherence, excellent tolerability profile with minimal first-dose hypotension, and a low incidence of adverse effects. Thus, AT1 receptor antagonists represent an appropriate option for many elderly patients with hypertension, type 2 diabetes, heart failure, and/or left ventricular dysfunction.Keywords: angiotensin II, ARB, cardiovascular disease, antihypertensive therapy, elderl

    Exchange protein directly activated by cAMP mediates slow delayed-rectifier current remodeling by sustained ÎČ-adrenergic activation in guinea pig hearts

    No full text
    Prolonged ÎČ1-adrenoceptor stimulation suppresses IKs by downregulating KCNE1 mRNA and protein via Epac-mediated Ca(2+)/calcineurin/NFAT signaling. These results provide new insights into the molecular basis of K(+) channel remodeling under sustained adrenergic stimulation

    Intracrine endothelin signaling evokes IP3-dependent increases in nucleoplasmic CaÂČâș in adult cardiac myocytes.

    No full text
    International audienceEndothelin receptors are present on the nuclear membranes in adult cardiac ventricular myocytes. The objectives of the present study were to determine 1) which endothelin receptor subtype is in cardiac nuclear membranes, 2) if the receptor and ligand traffic from the cell surface to the nucleus, and 3) the effect of increased intracellular ET-1 on nuclear Ca(2+) signaling. Confocal microscopy using fluorescently-labeled endothelin analogs confirmed the presence of ETB at the nuclear membrane of rat cardiomyocytes in skinned-cells and isolated nuclei. Furthermore, in both cardiac myocytes and aortic endothelial cells, endocytosed ET:ETB complexes translocated to lysosomes and not the nuclear envelope. Although ETA and ETB can form heterodimers, the presence or absence of ETA did not alter ETB trafficking. Treatment of isolated nuclei with peptide: N-glycosidase F did not alter the electrophoretic mobility of ETB. The absence of N-glycosylation further indicates that these receptors did not originate at the cell surface. Intracellular photolysis of a caged ET-1 analog ([Trp-ODMNB(21)]ET-1) evoked an increase in nucleoplasmic Ca(2+) ([Ca(2+)]n) that was attenuated by inositol 1,4,5-trisphosphate receptor inhibitor 2-aminoethoxydiphenyl borate and prevented by pre-treatment with ryanodine. A caged cell-permeable analog of the ETB-selective antagonist IRL-2500 blocked the ability of intracellular cET-1 to increase [Ca(2+)]n whereas extracellular application of ETA and ETB receptor antagonists did not. These data suggest that 1) the endothelin receptor in the cardiac nuclear membranes is ETB, 2) ETB traffics directly to the nuclear membrane after biosynthesis, 3) exogenous endothelins are not ligands for ETB on nuclear membranes, and 4) ETB associated with the nuclear membranes regulates nuclear Ca(2+) signaling

    Fibroblast inward-rectifier potassium current upregulation in profibrillatory atrial remodeling

    Get PDF
    CHF upregulates fibroblast KCNJ2 expression and currents, thereby hyperpolarizing RMP, increasing Ca(2+) entry, and enhancing atrial fibroblast proliferation. These effects are likely mediated by microRNA-26a downregulation. Remodeling-induced fibroblast KCNJ2 expression changes may play a role in atrial fibrillation promoting fibroblast remodeling and structural/arrhythmic consequences

    Regulation of cardiac nitric oxide signaling by nuclear ÎČ-adrenergic and endothelin receptors.

    No full text
    International audienceAt the cell surface, ÎČARs and endothelin receptors can regulate nitric oxide (NO) production. ÎČ-adrenergic receptors (ÎČARs) and type B endothelin receptors (ETB) are present in cardiac nuclear membranes and regulate transcription. The present study investigated the role of the NO pathway in the regulation of gene transcription by these nuclear G protein-coupled receptors. Nitric oxide production and transcription initiation were measured in nuclei isolated from the adult rat heart. The cell-permeable fluorescent dye 4,5-diaminofluorescein diacetate (DAF2 DA) was used to provide a direct assessment of nitric oxide release. Both isoproterenol and endothelin increased NO production in isolated nuclei. Furthermore, a ÎČ3AR-selective agonist, BRL 37344, increased NO synthesis whereas the ÎČ1AR-selective agonist xamoterol did not. Isoproterenol increased, whereas ET-1 reduced, de novo transcription. The NO synthase inhibitor l-NAME prevented isoproterenol from increasing either NO production or de novo transcription. l-NAME also blocked ET-1-induced NO-production but did not alter the suppression of transcription initiation by ET-1. Inhibition of the cGMP-dependent protein kinase (PKG) using KT5823 also blocked the ability of isoproterenol to increase transcription initiation. Furthermore, immunoblotting revealed eNOS, but not nNOS, in isolated nuclei. Finally, caged, cell-permeable isoproterenol and endothelin-1 analogs were used to selectively activate intracellular ÎČ-adrenergic and endothelin receptors in intact adult cardiomyocytes. Intracellular release of caged ET-1 or isoproterenol analogs increased NO production in intact adult cardiomyocytes. Hence, activation of the NO synthase/guanylyl cyclase/PKG pathway is necessary for nuclear ÎČ3ARs to increase de novo transcription. Furthermore, we have demonstrated the potential utility of caged receptor ligands in selectively modulating signaling via endogenous intracellular G protein-coupled receptors

    Photoreleasable ligands to study intracrine angiotensin II signalling.

    No full text
    International audienceThe renin-angiotensin system plays a key role in cardiovascular physiology and its overactivation has been implicated in the pathogenesis of several major cardiovascular diseases. There is growing evidence that angiotensin II (Ang-II) may function as an intracellular peptide to activate intracellular/nuclear receptors and their downstream signalling effectors independently of cell surface receptors. Current methods used to study intracrine Ang-II signalling are limited to indirect approaches because of a lack of selective intracellularly-acting probes. Here, we present novel photoreleasable Ang-II analogues used to probe intracellular actions with spatial and temporal precision. The photorelease of intracellular Ang-II causes nuclear and cytosolic calcium mobilization and initiates the de novo synthesis of RNA in cardiac cells, demonstrating the application of the method. Several lines of evidence suggest that intracellular angiotensin II (Ang-II) contributes to the regulation of cardiac contractility, renal salt reabsorption, vascular tone and metabolism; however, work on intracrine Ang-II signalling has been limited to indirect approaches because of a lack of selective intracellularly-acting probes. Here, we aimed to synthesize and characterize cell-permeant Ang-II analogues that are inactive without uncaging, but release active Ang-II upon exposure to a flash of UV-light, and act as novel tools for use in the study of intracrine Ang-II physiology. We prepared three novel caged Ang-II analogues, [Tyr(DMNB)(4)]Ang-II, Ang-II-ODMNB and [Tyr(DMNB)(4)]Ang-II-ODMNB, based upon the incorporation of the photolabile moiety 4,5-dimethoxy-2-nitrobenzyl (DMNB). Compared to Ang-II, the caged Ang-II analogues showed 2-3 orders of magnitude reduced affinity toward both angiotensin type-1 (AT1R) and type-2 (AT2R) receptors in competition binding assays, and greatly-reduced potency in contraction assays of rat thoracic aorta. After receiving UV-irradiation, all three caged Ang-II analogues released Ang-II and potently induced the contraction of rat thoracic aorta. [Tyr(DMNB)(4)]Ang-II showed the most rapid photolysis upon UV-irradiation and was the focus of subsequent characterization. Whereas Ang-II and photolysed [Tyr(DMNB)(4)]Ang-II increased ERK1/2 phosphorylation (via AT1R) and cGMP production (AT2R), caged [Tyr(DMNB)(4)]Ang-II did not. Cellular uptake of [Tyr(DMNB)(4)]Ang-II was 4-fold greater than that of Ang-II and significantly greater than uptake driven by the positive-control HIV TAT(48-60) peptide. Intracellular photolysis of [Tyr(DMNB)(4)]Ang-II induced an increase in nucleoplasmic Ca(2+) ([Ca(2+)]n), and initiated 18S rRNA and nuclear factor kappa B mRNA synthesis in adult cardiac cells. We conclude that caged Ang-II analogues represent powerful new tools for use in the selective study of intracrine signalling via Ang-II

    Activation of histone deacetylase-6 induces contractile dysfunction through derailment of α-tubulin proteostasis in experimental and human atrial fibrillation

    No full text
    BACKGROUND: Atrial fibrillation (AF) is characterized by structural remodeling, contractile dysfunction, and AF progression. Histone deacetylases (HDACs) influence acetylation of both histones and cytosolic proteins, thereby mediating epigenetic regulation and influencing cell proteostasis. Because the exact function of HDACs in AF is unknown, we investigated their role in experimental and clinical AF models. METHODS AND RESULTS: Tachypacing of HL-1 atrial cardiomyocytes and Drosophila pupae hearts significantly impaired contractile function (amplitude of Ca(2+) transients and heart wall contractions). This dysfunction was prevented by inhibition of HDAC6 (tubacin) and sirtuins (nicotinamide). Tachypacing induced specific activation of HDAC6, resulting in α-tubulin deacetylation, depolymerization, and degradation by calpain. Tachypacing-induced contractile dysfunction was completely rescued by dominant-negative HDAC6 mutants with loss of deacetylase activity in the second catalytic domain, which bears α-tubulin deacetylase activity. Furthermore, in vivo treatment with the HDAC6 inhibitor tubastatin A protected atrial tachypaced dogs from electric remodeling (action potential duration shortening, L-type Ca(2+) current reduction, AF promotion) and cellular Ca(2+)-handling/contractile dysfunction (loss of Ca(2+) transient amplitude, sarcomere contractility). Finally, atrial tissue from patients with AF also showed a significant increase in HDAC6 activity and reduction in the expression of both acetylated and total α-tubulin. CONCLUSIONS: AF induces remodeling and loss of contractile function, at least in part through HDAC6 activation and subsequent derailment of α-tubulin proteostasis and disruption of the cardiomyocyte microtubule structure. In vivo inhibition of HDAC6 protects against AF-related atrial remodeling, disclosing the potential of HDAC6 as a therapeutic target in clinical AF

    Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation

    No full text
    TRPC3 channels regulate cardiac fibroblast proliferation and differentiation, likely by controlling the Ca(2+) influx that activates extracellular signal-regulated kinase signaling. AF increases TRPC3 channel expression by causing NFAT-mediated downregulation of microRNA-26 and causes TRPC3-dependent enhancement of fibroblast proliferation and differentiation. In vivo, TRPC3 blockade prevents AF substrate development in a dog model of electrically maintained AF. TRPC3 likely plays an important role in AF by promoting fibroblast pathophysiology and is a novel potential therapeutic target
    corecore