1,651 research outputs found

    A SWOT analysis for offshore wind energy assessment using remote-sensing potential

    Get PDF
    The elaboration of a methodology for accurately assessing the potentialities of blue renewable energy sources is a key challenge among the current energy sustainability strategies all over the world. Consequentially, many researchers are currently working to improve the accuracy of marine renewable assessment methods. Nowadays, remote sensing (RSs) satellites are used to observe the environment in many fields and applications. These could also be used to identify regions of interest for future energy converter installations and to accurately identify areas with interesting potentials. Therefore, researchers can dramatically reduce the possibility of significant error. In this paper, a comprehensive SWOT (strengths, weaknesses, opportunities and threats) analysis is elaborated to assess RS satellite potentialities for offshore wind (OW) estimation. Sicily and Sardinia-the two biggest Italian islands with the highest potential for offshore wind energy generation-were selected as pilot areas. Since there is a lack of measuring instruments, such as cup anemometers and buoys in these areas (mainly due to their high economic costs), an accurate analysis was carried out to assess the marine energy potential from offshore wind. Since there are only limited options for further expanding the measurement over large areas, the use of satellites makes it easier to overcome this limitation. Undoubtedly, with the advent of new technologies for measuring renewable energy sources (RESs), there could be a significant energy transition in this area that requires a proper orientation of plans to examine the factors influencing these new technologies that can negatively affect most of the available potential. Satellite technology for identifying suitable areas of wind power plants could be a powerful tool that is constantly increasing in its applications but requires good planning to apply it in various projects. Proper planning is only possible with a better understanding of satellite capabilities and different methods for measuring available wind resources. To this end, a better understanding in interdisciplinary fields with the exchange of updated information between different sectors of development, such as universities and companies, will be most effective. In this context, by reviewing the available satellite technologies, the ability of this tool to measure the marine renewable energies (MREs) sector in large and small areas is considered. Secondly, an attempt is made to identify the strengths and weaknesses of using these types of tools and techniques that can help in various projects. Lastly, specific scenarios related to the application of such systems in existing and new developments are reviewed and discussed

    An approximate stance map of the spring mass hopper with gravity correction for nonsymmetric locomotions

    Get PDF
    The Spring-Loaded Inverted Pendulum (SLIP) model has long been established as an effective and accurate descriptive model for running animals of widely differing sizes and morphologies, while also serving as a basis for several hopping robot designs. Further research on this model led to the discovery of several analytic approximations to its normally nonintegrable dynamics. However, these approximations mostly focus on steady-state running with symmetric trajectories due to their linearization of gravitational effects, an assumption that is quickly violated for locomotion on more complex terrain wherein transient, non-symmetric trajectories dominate. In this paper, we introduce a novel gravity correction scheme that extends on one of the more recent analytic approximations to the SLIP dynamics and achieves good accuracy even for highly non-symmetric trajectories. Our approach is based on incorporating the total effect of gravity on the angular momentum throughout a single stance phase and allows us to preserve the analytic simplicity of the approximation to support our longer term research on reactive footstep planning for dynamic legged locomotion. We compare the performance of our method in simulation to two other existing analytic approximations and show that it outperforms them for most physically realistic non-symmetric SLIP trajectories while maintaining the same accuracy for symmetric trajectories. © 2009 IEEE

    Unusual rainfall shift during monsoon period of 2010 in Pakistan: Flash flooding in Northern Pakistan and riverine flooding in Southern Pakistan

    Get PDF
    Floods due to “blocking event” in the jet stream during 2010 caused intense rainfall and flash floods in northern Pakistan which resulted to riverine flooding in southern Pakistan. In the beginning of July 2010, changes in summer monsoon rainfall patterns caused the most severe flooding in Pakistan history. Process control charts suggest that monsoon pattern was not normal which made one-fifth of the country to be inundated. In this study, our main concern was to check the upward shifts (floods) in the rainfall pattern of all provinces of Pakistan. Results indicate that there was significant and sudden shift in the rainfall pattern of monsoon in 2010 which might be due to prolong “blocking event” in the jet stream. In late July, rainwater from the highlands entered major rivers which affected nearby areas of the Indus River. More than 250 mm of rain fell over a 36-h period in late July. Abeyant policies by the Pakistan Irrigation Department (PID) caused destruction in Jacobabad which was not a normal Indus waterway. The first week of August marked the worst week of extreme flooding in southern Pakistan. Flood simulation overylay technique showed the affected areas of the country in comparison with normal waterways by using vector and raster data images.Key words: Indus River, monsoon, flooding in 2010, rainfall pattern, Climate Change, Floods

    BilVideo: Design and implementation of a video database management system

    Get PDF
    With the advances in information technology, the amount of multimedia data captured, produced, and stored is increasing rapidly. As a consequence, multimedia content is widely used for many applications in today's world, and hence, a need for organizing this data, and accessing it from repositories with vast amount of information has been a driving stimulus both commercially and academically. In compliance with this inevitable trend, first image and especially later video database management systems have attracted a great deal of attention, since traditional database systems are designed to deal with alphanumeric information only, thereby not being suitable for multimedia data. In this paper, a prototype video database management system, which we call BilVideo, is introduced. The system architecture of BilVideo is original in that it provides full support for spatio-temporal queries that contain any combination of spatial, temporal, object-appearance, external-predicate, trajectory-projection, and similarity-based object-trajectory conditions by a rule-based system built on a knowledge-base, while utilizing an object-relational database to respond to semantic (keyword, event/activity, and category-based), color, shape, and texture queries. The parts of BilVideo (Fact-Extractor, Video-Annotator, its Web-based visual query interface, and its SQL-like textual query language) are presented, as well. Moreover, our query processing strategy is also briefly explained. © 2005 Springer Science + Business Media, Inc

    Weakly Z symmetric manifolds

    Get PDF
    We introduce a new kind of Riemannian manifold that includes weakly-, pseudo- and pseudo projective- Ricci symmetric manifolds. The manifold is defined through a generalization of the so called Z tensor; it is named "weakly Z symmetric" and denoted by (WZS)_n. If the Z tensor is singular we give conditions for the existence of a proper concircular vector. For non singular Z tensor, we study the closedness property of the associated covectors and give sufficient conditions for the existence of a proper concircular vector in the conformally harmonic case, and the general form of the Ricci tensor. For conformally flat (WZS)_n manifolds, we derive the local form of the metric tensor.Comment: 13 page

    Approximate analytic solutions to non-symmetric stance trajectories of the passive Spring-Loaded Inverted Pendulum with damping

    Get PDF
    This paper introduces an accurate yet analytically simple approximation to the stance dynamics of the Spring-Loaded Inverted Pendulum (SLIP) model in the presence of non-negligible damping and non-symmetric stance trajectories. Since the SLIP model has long been established as an accurate descriptive model for running behaviors, its careful analysis is instrumental in the design of successful locomotion controllers. Unfortunately, none of the existing analytic methods in the literature explicitly take damping into account, resulting in degraded predictive accuracy when they are used for dissipative runners. We show that the methods we propose not only yield average predictive errors below 2% in the presence of significant damping, but also outperform existing alternatives to approximate the trajectories of a lossless model. Finally, we exploit both the predictive performance and analytic simplicity of our approximations in the design of a gait-level running controller, demonstrating their practical utility and performance benefits. © 2010 Springer Science+Business Media B.V
    corecore