14 research outputs found

    Thermalization from gauge/gravity duality: Evolution of singularities in unequal time correlators

    Full text link
    We consider a gauge/gravity dual model of thermalization which consists of a collapsing thin matter shell in asymptotically Anti-de Sitter space. A central aspect of our model is to consider a shell moving at finite velocity as determined by its equation of motion, rather than a quasi-static approximation as considered previously in the literature. By applying a divergence matching method, we obtain the evolution of singularities in the retarded unequal time correlator GR(t,t′)G^R(t,t'), which probes different stages of the thermalization. We find that the number of singularities decreases from a finite number to zero as the gauge theory thermalizes. This may be interpreted as a sign of decoherence. Moreover, in a second part of the paper, we show explicitly that the thermal correlator is characterized by the existence of singularities in the complex time plane. By studying a quasi-static state, we show the singularities at real times originate from contributions of normal modes. We also investigate the possibility of obtaining complex singularities from contributions of quasi-normal modes.Comment: 35 pages, 4 figure

    Quasilocal formalism and thermodynamics of asymptotically flat black objects

    Get PDF
    We study the properties of 5-dimensional black objects by using the renormalized boundary stress-tensor for locally asymptotically flat spacetimes. This provides a more refined form of the quasilocal formalism which is useful for a holographic interpretation of asymptotically flat gravity. We apply this technique to examine the thermodynamic properties of black holes, black rings, and black strings. The advantage of using this method is that we can go beyond the `thin ring' approximation and compute the boundary stress tensor for any general (thin or fat) black ring solution. We argue that the boundary stress tensor encodes the necessarily information to distinguish between black objects with different horizon topologies in the bulk. We also study in detail the susy black ring and clarify the relation between the asymptotic charges and the charges defined at the horizon. Furthermore, we obtain the balance condition for `thin' dipole black rings.Comment: v2 clarifications on the advantage of using quasilocal formalism for black rings added, CQG versio

    A soliton menagerie in AdS

    Full text link
    We explore the behaviour of charged scalar solitons in asymptotically global AdS4 spacetimes. This is motivated in part by attempting to identify under what circumstances such objects can become large relative to the AdS length scale. We demonstrate that such solitons generically do get large and in fact in the planar limit smoothly connect up with the zero temperature limit of planar scalar hair black holes. In particular, for given Lagrangian parameters we encounter multiple branches of solitons: some which are perturbatively connected to the AdS vacuum and surprisingly, some which are not. We explore the phase space of solutions by tuning the charge of the scalar field and changing scalar boundary conditions at AdS asymptopia, finding intriguing critical behaviour as a function of these parameters. We demonstrate these features not only for phenomenologically motivated gravitational Abelian-Higgs models, but also for models that can be consistently embedded into eleven dimensional supergravity.Comment: 62 pages, 21 figures. v2: added refs and comments and updated appendice

    QCD with Chemical Potential in a Small Hyperspherical Box

    Full text link
    To leading order in perturbation theory, we solve QCD, defined on a small three sphere in the large N and Nf limit, at finite chemical potential and map out the phase diagram in the (mu,T) plane. The action of QCD is complex in the presence of a non-zero quark chemical potential which results in the sign problem for lattice simulations. In the large N theory, which at low temperatures becomes a conventional unitary matrix model with a complex action, we find that the dominant contribution to the functional integral comes from complexified gauge field configurations. For this reason the eigenvalues of the Polyakov line lie off the unit circle on a contour in the complex plane. We find at low temperatures that as mu passes one of the quark energy levels there is a third-order Gross-Witten transition from a confined to a deconfined phase and back again giving rise to a rich phase structure. We compare a range of physical observables in the large N theory to those calculated numerically in the theory with N=3. In the latter case there are no genuine phase transitions in a finite volume but nevertheless the observables are remarkably similar to the large N theory.Comment: 44 pages, 18 figures, jhep3 format. Small corrections and clarifications added in v3. Conclusions cleaned up. Published versio

    Refined Chern-Simons theory and (q, t)-deformed Yang-Mills theory : Semi-classical expansion and planar limit

    Get PDF
    We study the relationship between refined Chern-Simons theory on lens spaces S-3/Z(p) and (q, t)-deformed Yang-Mills theory on the sphere S-2. We derive the instanton partition function of (q, t)-deformed U(N) Yang-Mills theory and describe it explicitly as an analytical continuation of the semi-classical expansion of refined Chern-Simons theory. The derivations are based on a generalization of the Weyl character formula to Macdonald polynomials. The expansion is used to formulate q-generalizations of beta-deformed matrix models for refined Chern-Simons theory, as well as conjectural formulas for the chi(y)-genus of the moduli space of U(N) instantons on the surface O(-p) -> P-1 for all p >= 1 which enumerate black hole microstates in refined topological string theory. We study the large N phase structures of the refined gauge theories, and match them with refined topological string theory on the resolved conifold

    Invariant Differential Operators and Characters of the AdS_4 Algebra

    Full text link
    The aim of this paper is to apply systematically to AdS_4 some modern tools in the representation theory of Lie algebras which are easily generalised to the supersymmetric and quantum group settings and necessary for applications to string theory and integrable models. Here we introduce the necessary representations of the AdS_4 algebra and group. We give explicitly all singular (null) vectors of the reducible AdS_4 Verma modules. These are used to obtain the AdS_4 invariant differential operators. Using this we display a new structure - a diagram involving four partially equivalent reducible representations one of which contains all finite-dimensional irreps of the AdS_4 algebra. We study in more detail the cases involving UIRs, in particular, the Di and the Rac singletons, and the massless UIRs. In the massless case we discover the structure of sets of 2s_0-1 conserved currents for each spin s_0 UIR, s_0=1,3/2,... All massless cases are contained in a one-parameter subfamily of the quartet diagrams mentioned above, the parameter being the spin s_0. Further we give the classification of the so(5,C) irreps presented in a diagramatic way which makes easy the derivation of all character formulae. The paper concludes with a speculation on the possible applications of the character formulae to integrable models.Comment: 30 pages, 4 figures, TEX-harvmac with input files: amssym.def, amssym.tex, epsf.tex; version 2 1 reference added; v3: minor corrections; v.4: minor corrections, v.5: minor corrections to conform with version in J. Phys. A: Math. Gen; v.6.: small correction and addition in subsections 4.1 & 4.

    Luttinger's theorem, superfluid vortices, and holography

    Full text link
    Strongly coupled field theories with gravity duals can be placed at finite density in two ways: electric field flux emanating from behind a horizon, or bulk charged fields outside of the horizon that explicitly source the density. We discuss field-theoretical observables that are sensitive to this distinction. If the charged fields are fermionic, we discuss a modified Luttinger's theorem that holds for holographic systems, in which the sum of boundary theory Fermi surfaces counts only the charge outside of the horizon. If the charged fields are bosonic, we show that the the resulting superfluid phase may be characterized by the coefficient of the transverse Magnus force on a moving superfluid vortex, which again is sensitive only to the charge outside of the horizon. For holographic systems these observables provide a field-theoretical way to distinguish how much charge is held by a dual horizon, but they may be useful in more general contexts as measures of deconfined (i.e. "fractionalized") charge degrees of freedom.Comment: 21 pages; version 2: minor changes, version to be published in CQG; version 3: minor change

    Fractionalization of holographic Fermi surfaces

    Full text link
    Zero temperature states of matter are holographically described by a spacetime with an asymptotic electric flux. This flux can be sourced either by explicit charged matter fields in the bulk, by an extremal black hole horizon, or by a combination of the two. We refer to these as mesonic, fully fractionalized and partially fractionalized phases of matter, respectively. By coupling a charged fluid of fermions to an asymptotically AdS_4 Einstein-Maxwell-dilaton theory, we exhibit quantum phase transitions between all three of these phases. The onset of fractionalization can be either a first order or continuous phase transition. In the latter case, at the quantum critical point the theory displays an emergent Lifshitz scaling symmetry in the IR.Comment: 1+24 pages. 7 figure

    Spectral function of the supersymmetry current

    Full text link
    We continue our study of the retarded Green's function of the universal fermionic supersymmetry current ("supercurrent") for the most general class of d=3 N=2 SCFTs with D=10 or D=11 supergravity duals by studying the propagation of the Dirac gravitino in the electrically charged AdS-Reissner-Nordstr\"om black-brane background of N=2 minimal gauged supergravity in D=4. We expand upon results presented in a companion paper, including the absence of a Fermi surface and the appearance of a soft power-law gap at zero temperature. We also present the analytic solution of the gravitino equation in the AdS_2 X R^2 background which arises as the near-horizon limit at zero temperature. In addition we determine the quasinormal mode spectrum.Comment: 65 pages, 6 Figs; version published in journa
    corecore