28 research outputs found

    Population structure and genetic diversity of 25 Russian sheep breeds based on whole-genome genotyping

    Get PDF
    Background: Russia has a diverse variety of native and locally developed sheep breeds with coarse, fine, and semi-fine wool, which inhabit different climate zones and landscapes that range from hot deserts to harsh northern areas. To date, no genome-wide information has been used to investigate the history and genetic characteristics of the extant local Russian sheep populations. To infer the population structure and genome-wide diversity of Russian sheep, 25 local breeds were genotyped with the OvineSNP50 BeadChip. Furthermore, to evaluate admixture contributions from foreign breeds in Russian sheep, a set of 58 worldwide breeds from publicly available genotypes was added to our data. Results: We recorded similar observed heterozygosity (0.354-0.395) and allelic richness (1.890-1.955) levels across the analyzed breeds and they are comparable with those observed in the worldwide breeds. Recent effective population sizes estimated from linkage disequilibrium five generations ago ranged from 65 to 543. Multi-dimensional scaling, admixture, and neighbor-net analyses consistently identified a two-step subdivision of the Russian local sheep breeds. A first split clustered the Russian sheep populations according to their wool type (fine wool, semi-fine wool and coarse wool). The Dagestan Mountain and Baikal fine-fleeced breeds differ from the other Merino-derived local breeds. The semi-fine wool cluster combined a breed of Romanian origin, Tsigai, with its derivative Altai Mountain, the two Romney-introgressed breeds Kuibyshev and North Caucasian, and the Lincoln-introgressed Russian longhaired breed. The coarse-wool group comprised the Nordic short-tailed Romanov, the long-fat-tailed outlier Kuchugur and two clusters of fat-tailed sheep: the Caucasian Mountain breeds and the Buubei, Karakul, Edilbai, Kalmyk and Tuva breeds. The Russian fat-tailed breeds shared co-ancestry with sheep from China and Southwestern Asia (Iran). Conclusions: In this study, we derived the genetic characteristics of the major Russian local sheep breeds, which are moderately diverse and have a strong population structure. Pooling our data with a worldwide genotyping set gave deeper insight into the history and origin of the Russian sheep populations

    Dissecting selective signatures and candidate genes in grandparent lines subject to high selection pressure for broiler production and in a local Russian chicken breed of Ushanka

    Get PDF
    Breeding improvements and quantitative trait genetics are essential to the advancement of broiler production. The impact of artificial selection on genomic architecture and the genetic markers sought remains a key area of research. Here, we used whole-genome resequencing data to analyze the genomic architecture, diversity, and selective sweeps in Cornish White (CRW) and Plymouth Rock White (PRW) transboundary breeds selected for meat production and, comparatively, in an aboriginal Russian breed of Ushanka (USH). Reads were aligned to the reference genome bGalGal1.mat.broiler.GRCg7b and filtered to remove PCR duplicates and low-quality reads using BWA-MEM2 and bcftools software; 12,563,892 SNPs were produced for subsequent analyses. Compared to CRW and PRW, USH had a lower diversity and a higher genetic distinctiveness. Selective sweep regions and corresponding candidate genes were examined based on ZFST, hapFLK, and ROH assessment procedures. Twenty-seven prioritized chicken genes and the functional projection from human homologs suggest their importance for selection signals in the studied breeds. These genes have a functional relationship with such trait categories as body weight, muscles, fat metabolism and deposition, reproduction, etc., mainly aligned with the QTLs in the sweep regions. This information is pivotal for further executing genomic selection to enhance phenotypic traits

    Selective footprints and genes relevant to cold adaptation and other phenotypic traits are unscrambled in the genomes of divergently selected chicken breeds

    Get PDF
    Background: The genomes of worldwide poultry breeds divergently selected for performance and other phenotypic traits may also be affected by, and formed due to, past and current admixture events. Adaptation to diverse environments, including acclimation to harsh climatic conditions, has also left selection footprints in breed genomes. Results: Using the Chicken 50K_CobbCons SNP chip, we genotyped four divergently selected breeds: two aboriginal, cold tolerant Ushanka and Orloff Mille Fleur, one egg-type Russian White subjected to artificial selection for cold tolerance, and one meat-type White Cornish. Signals of selective sweeps were determined in the studied breeds using three methods: (1) assessment of runs of homozygosity islands, (2) FST based population differential analysis, and (3) haplotype differentiation analysis. Genomic regions of true selection signatures were identified by two or more methods or in two or more breeds. In these regions, we detected 540 prioritized candidate genes supplemented them with those that occurred in one breed using one statistic and were suggested in other studies. Amongst them, SOX5, ME3, ZNF536, WWP1, RIPK2, OSGIN2, DECR1, TPO, PPARGC1A, BDNF, MSTN, and beta-keratin genes can be especially mentioned as candidates for cold adaptation. Epigenetic factors may be involved in regulating some of these important genes (e.g., TPO and BDNF). Conclusion: Based on a genome-wide scan, our findings can help dissect the genetic architecture underlying various phenotypic traits in chicken breeds. These include genes representing the sine qua non for adaptation to harsh environments. Cold tolerance in acclimated chicken breeds may be developed following one of few specific gene expression mechanisms or more than one overlapping response known in cold-exposed individuals, and this warrants further investigation

    Historical Introgression from Wild Relatives Enhanced Climatic Adaptation and Resistance to Pneumonia in Sheep

    Get PDF
    How animals, particularly livestock, adapt to various climates and environments over short evolutionary time is of fundamental biological interest. Further, understanding the genetic mechanisms of adaptation in indigenous livestock populations is important for designing appropriate breeding programs to cope with the impacts of changing climate. Here, we conducted a comprehensive genomic analysis of diversity, interspecies introgression, and climate-mediated selective signatures in a global sample of sheep and their wild relatives. By examining 600K and 50K genome-wide single nucleotide polymorphism data from 3,447 samples representing 111 domestic sheep populations and 403 samples from all their seven wild relatives (argali, Asiatic mouflon, European mouflon, urial, snow sheep, bighorn, and thinhorn sheep), coupled with 88 whole-genome sequences, we detected clear signals of common introgression from wild relatives into sympatric domestic populations, thereby increasing their genomic diversities. The introgressions provided beneficial genetic variants in native populations, which were significantly associated with local climatic adaptation. We observed common introgression signals of alleles in olfactory-related genes (e.g., ADCY3 and TRPV1) and the PADI gene family including in particular PADI2, which is associated with antibacterial innate immunity. Further analyses of whole-genome sequences showed that the introgressed alleles in a specific region of PADI2 (chr2: 248,302,667–248,306,614) correlate with resistance to pneumonia. We conclude that wild introgression enhanced climatic adaptation and resistance to pneumonia in sheep. This has enabled them to adapt to varying climatic and environmental conditions after domestication

    Phylogenetic Analysis of Russian Native Sheep Breeds Based on mtDNA Sequences

    No full text
    Eurasia is represented by all climatic zones and various environments. A unique breed variety of farm animals has been developed in Russia, whose territory covers a large area of the continent. A total of 69 local breeds and types of dairy, wool, and meat sheep (Ovis aries) are maintained here. However, the genetic diversity and maternal origin of these local breeds have not been comprehensively investigated. In this study, we describe the diversity and phylogeny of Russian sheep breeds inhabiting different geographical regions based on the analysis of complete sequences of mitochondrial genomes (mtDNA). Complete mtDNA sequences of the studied sheep were obtained using next-generation sequencing technology (NGS). All investigated geographical groups of sheep were characterized by high haplotype (Hd = 0.9992) and nucleotide diversity (Ď€ = 0.00378). Analysis of the AMOVA results showed that genetic diversity was majorly determined by within-population differences (77.87%). We identified 128 haplotypes in all studied sheep. Haplotypes belonged to the following haplogroups: B (64.8%), A (28.9%), C (5.5%), and D (0.8%). Haplogroup B was predominant in the western part of Russia. A high level of mtDNA polymorphism in the studied groups of local sheep indicates the presence of a significant reserve of unique genotypes in Russia, which is to be explored

    Genome-Wide Screening for SNPs Associated with Stature in Diverse Cattle Breeds

    No full text
    Cattle breeds used in industrial production tend to be larger than local cattle, as increased dairy and beef productivity is closely related to stature. This study aimed to identify single nucleotide polymorphisms (SNPs) significantly associated with stature in diverse cattle breeds. Thirteen local and transboundary cattle breeds (n = 670) were divided into two groups according to their stature. The high-stature group included the Angus, Ayrshire, Black-and-White, Holstein, Kholmogor, Yaroslavl, Tagil, and Istoben breeds. The low-stature group included Jersey, Kalmyk, Kyrgyz, Mongolian, and Yakut. The average height at withers was 136.3 ± 1.6 and 121.6 ± 2.8 cm in the high- and low-stature groups, respectively. The samples of the 11 breeds were genotyped using high-density DNA arrays. Genotypes of the two remaining breeds were downloaded from the publicly available WIDDE database. Genome-wide association studies revealed seven SNPs strongly associated with stature, including three at 77.3–77.8 cM on BTA4 and four at 24.5–25.2 cM on BTA14. Functional annotation showed the localization within identified regions of genes responsible for growth, exterior characteristics, protein and lipid metabolism, and feed intake. The identified SNPs can be considered useful DNA markers for marker-assisted cattle breeding aimed at increasing stature

    Genome-Wide SNP Analysis Reveals the Genetic Diversity and Population Structure of the Domestic Reindeer Population (<i>Rangifer tarandus</i>) Inhabiting the Indigenous Tofalar Lands of Southern Siberia

    No full text
    Operating under the assumption that decline in population size increases the threat of loss of genetic diversity, herein, our first aim was to monitor and document the genetic diversity and population structure of the endemic Tuva–Tofalar reindeer, the number of which has seen a dramatic decrease. Second, we were interested in understanding of Tuva reindeer genetic relationship with four officially recognized reindeer breeds, whose wild populations inhabit the Far North of Russia, as well as with the domestic reindeer making up the Mongolian population. Our results, based on the genome-wide SNP genotypes generated by the BovineHD BeadChip, revealed a low level of genetic variability of Tuva population in terms of the values of both allelic and genetic diversity. The ADMIXTURE analysis, the PCA plot, and the Neighbor Net network results, showed that Tuva population shared genetic background with reindeer inhabiting Mongolia, an implication of their common origin. Moreover, all statistic approaches used in our study showed a distinctive shared genetic structure revealed in independent clusters found in the composition of: an admixed cluster of Tuvan and Mongolian populations, a cluster of domestic reindeer breeds, and a cluster of the wild populations—all of which indirectly points to the possibility of the independent origins (with regard to the domestication) of the reindeer groups studied herein. We believe that our findings will contribute to the formation of a rational basis for solving problems related to the conservation of domestic Tuva-Tofalar reindeer in order to increase the number of this substantial reindeer population which will contribute to the sustainable functioning of ecosystems and the lives and culture of indigenous peoples inhabiting the southern sections of Eastern Siberia
    corecore