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Abstract: Breeding improvements and quantitative trait genetics are essential to the advancement

of broiler production. The impact of artificial selection on genomic architecture and the genetic

markers sought remains a key area of research. Here, we used whole-genome resequencing data

to analyze the genomic architecture, diversity, and selective sweeps in Cornish White (CRW) and

Plymouth Rock White (PRW) transboundary breeds selected for meat production and, comparatively,

in an aboriginal Russian breed of Ushanka (USH). Reads were aligned to the reference genome

bGalGal1.mat.broiler.GRCg7b and filtered to remove PCR duplicates and low-quality reads using

BWA-MEM2 and bcftools software; 12,563,892 SNPs were produced for subsequent analyses. Com-

pared to CRW and PRW, USH had a lower diversity and a higher genetic distinctiveness. Selective

sweep regions and corresponding candidate genes were examined based on ZFST, hapFLK, and ROH

assessment procedures. Twenty-seven prioritized chicken genes and the functional projection from

human homologs suggest their importance for selection signals in the studied breeds. These genes

have a functional relationship with such trait categories as body weight, muscles, fat metabolism and

deposition, reproduction, etc., mainly aligned with the QTLs in the sweep regions. This information

is pivotal for further executing genomic selection to enhance phenotypic traits.

Keywords: selection signatures; genomic regions; candidate genes; chicken; SNPs; White Cornish

breed; Plymouth Rock White breed; Ushanka breed; genetic diversity; broiler production

1. Introduction

Broiler production is both one of the leading and fastest-growing parts of the world-
wide food production industry [1–4]. By 2031, 153.85 metric kilotons of poultry meat are
anticipated to be consumed globally and 41% of all world meat consumption will be chicken
(as reviewed by [2]). The progress in broiler production relies upon advances in selective
breeding [5] and the genetics of quantitative traits [6,7]. The respective influence of the latter
on reproductive fitness has been, and continues to be, a major subject of study in artificial
selection experiments [8,9]. It is well recognized that long-term artificial selection of ani-
mals affects the genomic architecture of breeds and yields genetic signatures for breeding
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traits [10]. More about the dynamics of advantageous (and disadvantageous) alleles arising
from the founder population, or appearing as novel mutations under continuing selection,
can be learnt by tracking genomic changes through time in populations that have been
subjected to intense artificial directional selection [11–15]. Such studies are a key source of
knowledge in exploring how selection affects the genome and quantitative trait loci (QTLs).
In this vein, domesticated chicken breeds can be considered as long-term artificial selection
experiments. One such example is the famous bidirectional selection experiment for body
weight in the Virginia chicken lines that started in 1957 [16–20]. Continual monitoring of the
existing poultry genetic stocks from these breeds and lines is crucial for their sustainability
and use in commercial breeding programs (e.g., [21–27]).

A representative proportion of segregating variation in breeding experimental data
available from designs of commercial broiler crosses using parent strains of divergent
artificial selection experiments is higher than that produced by crossing two random inbred
lines [28–30]. This principle is used in these cross designs and consists of four grandparent
lines: two (paternal and maternal) for producing a male parent (breeder) stock and two (pa-
ternal and maternal) for producing a female parent (breeder) stock (e.g., [31–33]). Usually,
two transboundary meat-type breeds, Cornish White (CRW; Figure 1a) and Plymouth Rock
White (PRW; Figure 1b), are used in commercial broiler production as male and female
breeder stocks, respectively [34–37].
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Figure 1. The three chicken breeds examined in this study. (a) Cornish White (female, left; male, 
right); (b) Plymouth Rock White (male, front; females, back); and (c) Ushanka (female, left; male, 
right).

Figure 1. The three chicken breeds examined in this study. (a) Cornish White (female, left; male, right);
(b) Plymouth Rock White (male, front; females, back); and (c) Ushanka (female, left; male, right).
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By selecting for characteristics such as rapid growth/development, feed efficiency, and
high yield/quality of breast meat, it is possible to enhance the genetic potential of broiler
chickens further [31,38]. This can be achieved through studies of association between
candidate genes and phenotypic traits in commercial broiler (breeder) populations [39–46].
Quantitative genetics, computer science, and DNA chip technologies are used in broiler
breeding operations to select breeding birds. In pedigree selection systems, significant
genetic markers such as single nucleotide polymorphisms (SNPs) can be identified through
the use of DNA chip technology, as well as more novel marker-assisted and genomic selec-
tion strategies [31,47–49]. Previously, genome-wide SNP scans have been used efficiently
for studying the genetic architecture, diversity, selective footprints, and evolutionary
implications in various Russian meat-type and other chicken breeds and lines [50–63].
Whole-genome resequencing approaches can produce even more SNPs that are usable for
in-depth analyses of genomic architecture and candidate genes [20,64,65].

The purpose of the present study was to perform whole-genome resequencing and
examine in more detail the selection trajectories in the genomes of the pure grandparent
lines of two transboundary meat-type breeds. These were CRW (Figure 1a) and PRW
(Figure 1b) that are used in a four-way broiler cross developed in Russia. As a comparison
group, we chose the primitive dual-purpose and fancy breed named Ushanka (USH;
Figure 1c) that has been bred in Russia for a few centuries in a closed population without
any strict selection pressure [59,62,63].

2. Materials and Methods

2.1. Experimental Animals, Sample Collection, and DNA Extraction

The sampling of animals examined included 20 CRW, 20 PRW, and 17 USH male
birds. The transboundary CRW and PRW breeds were represented by birds of the four-way
broiler cross Smena 8 [66,67] developed at the Breeding and Genetic Center “Smena” (BGCS;
Bereznyaki, Moscow Oblast, Russia), Branch of the Federal Scientific Center “All-Russian
Research and Technological Poultry Institute” (FSC ARRTPI; Sergiev Posad, Moscow Oblast,
Russia). Within the CRW breed there were two lines: B5 (the paternal line of the male
parent stock of this cross) and B6 (the maternal line of the male parent stock). Similarly, for
PRW, there were two lines: B7 (female parent stock’s paternal line) and B9 (female parent
stock’s maternal line). For each of the above four grandparent lines, 10 male birds were
sampled. USH is known as an archaic indigenous breed that manifests cold adaptation and
is bred in a confined population with little or no selection pressure [62,63]; it was used as a
comparative group in the present investigation.

The CRW and PRW chickens were provided by BGCS and those of the USH breed
by the Breeding and Genetic Center “Zagorsk Experimental Breeding Farm” (Sergiev
Posad, Moscow Oblast, Russia), FSC ARRTPI Branch. The breed flocks were housed in the
bioresource Gene Pool Collection of Farm and Wild Animals and Birds at the L. K. Ernst
Federal Research Center for Animal Husbandry (LKEFRCAH, Dubrovitsy, Moscow Oblast,
Russia). All of the experimental birds had a basic feed and maintenance conditions that
complied with zootechnic and zoohygienic norms stated elsewhere (e.g., [68,69]).

Samples of pulp-containing feathers were taken from 57 chickens of all three breeds
and lines studied. The Syntol kit for DNA isolation from animal tissues (Syntol LLC,
Moscow, Russia) was used to extract DNA. The concentration of the DNA solution was
measured with a Qubit 3.0 fluorimeter (Thermo Fisher Scientific, Wilmington, DE, USA). Us-
ing a NanoDrop-2000 device (Thermo Fisher Scientific), the OD260/280 ratio was measured
to verify the extracted DNA’s purity.

2.2. Sequencing, SNP Genotyping and Quality Control

The samples collected were sequenced using paired-end sequencing (2 × 150 bp) and
an Illumina NextSeq instrument (San Diego, CA, USA), with a mean coverage of 20×.

Filtering of whole-genome resequencing raw data was carried out using the Fastp
program [70], with the recommended launch parameters. During the filtering process,
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nucleotide sequences of Illumina adapters and sequences with low-quality reads were
trimmed. Quality control before and after using the Fastp program was carried out us-
ing the FastQC program [71]. Mapping of short reads to the reference genome was car-
ried out using the BWA-MEM2 software package [72] based on the bwa-mem algorithm
of the original BWA program [73]. The chicken (Gallus gallus; GGA) assembly bGal-
Gal1.mat.broiler.GRCg7b (Ensembl release 108) [74,75] was used as a reference genome.
Sorting, removing duplicates, and indexing the resultant files in BAM format were carried
out using the samtools set of utilities [76]. Determination of SNP positions, insertions and
deletions, and manipulation of VCF files were performed using the bcftools package [77].
The Tabix program [78] was also used to index VCF files. The GNU Parallel program [79]
was used to execute tasks in parallel in order to reduce calculation time.

The generated number of reads per breed was 308.24± 10.85 million, totaling 44.40 ± 0.88 GB.
An average sequence coverage was 21.07 ± 0.42 X. A total of 12,563,892 polymorphic SNPs
were selected for further analysis. Hereby, sex chromosome (GGAZ and GGAW) SNPs
were excluded from the analysis.

2.3. Genetic Diversity and Population Structure

Analysis of genetic diversity and interbreed relationships was performed as described
in [58]. In brief, to assess genetic diversity within populations, PLINK v1.9 software was
employed [80,81]. Principal component analysis (PCA) based on the variance-standardized
relationship matrix was performed using PLINK [80], and the results were visualized using
the R package ggplot2 [82]. R package diveRsity [83] was used to calculation observed
heterozygosity (HO), unbiased expected heterozygosity (UHE) [84], rarefied allelic richness
(AR) [85], and inbreeding coefficient (UFIS) based on the unbiased expected heterozygosity.

The genetic admixture analysis of the populations studied was performed using
Admixture v1.3 software [86,87], and the results were plotted using the R package BITE [88].
The number of ancestral populations (K) was determined using a conventional admixture
cross-validation (CV) approach [89]. When compared to different K numbers, the assumed
number of K conformed to the CV error value that was lowest (Supplementary Figure S1).

2.4. Genetic Diversity and Population Structure

2.4.1. ZFST Estimation

We analyzed population differentiation based on mean FST values over a 50 kB sliding
window with 10 kB steps, assuming that changes during selection pressure affect not only
the target region but also its associated sites. The window size was chosen based on the
degree of attenuation of linkage disequilibrium (LD) toward the genome-wide background
in order to set the window to roughly the size where LD decays to the genome-wide
background (Supplementary Figure S2).

LD decay was calculated with PLINK using the original script (as described in [90]).
To limit false-positive outliers, the mean FST values were Z-transformed to generate ZFST
values as follows: ZFST = (FST − µFST)/σFST, where µFST and σFST are the mean and
standard deviation of FST values in all windows [64,91]. In fact, ZFST values indicate the
number of standard deviations of the nth value from the mean. That is, they are suitable
to search for outliers in a data array because they relate to the conventional values of ±3σ

that include 99.7% of values with a normal distribution. In our case, we specifically looked
for variants of FST values that deviate greatly from the mean. Regions containing SNPs for
which ZFST values were included in the 0.1% of maximum values were considered to be
the areas most subject to selection pressure.

2.4.2. HapFLK Procedure

To detect the signatures of selection through haplotype differentiation among the
studied breeds, we also employed the hapFLK 1.4 program [92,93]. In fastPHASE, the
number of haplotype clusters per chromosome was established at 35 by the use of cross-
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validation-based estimation [94–98]. We chose the hapFLK areas with at least one SNP and
a p-value cutoff of 0.00001 (−log10(p) > 5) for in-depth analysis.

2.4.3. ROH and Inbreeding Estimation

We used a consecutiveRUNS.run function [99–102] implemented in the R package
detectRUNS [103–105] for estimation of runs of homozygosity (ROH) [106,107]. To avoid
the inclusion of the most common short fragments in the results, we set the minimum
length for ROH to 0.5 MB. Considering that the density of genomic data is significantly
higher than that of SNP-chip data, the values of a possible missing genotype and a possible
heterozygous genotype (maxMissRun and maxOppRun) [108–110] were taken as 21. The
latter value was obtained as the ratio of the density of our data (12.5 M SNPs) to the densest
SNP chip for chickens (600 K SNPs). We determined the minimal number of SNPs (l) as
was first assessed by Lencz et al. [111] and later modified by Purfield et al. [112] in order to
minimize false-positive outcomes. In our study, the minimum number of SNPs was equal
to 50. The respective genomic inbreeding coefficient (FROH) was computed using data
regarding the homozygous region count and length in the examined breed genomes [113].
This FROH estimate was represented by the proportion of each individual’s total length of
ROH to the length of the autosomal SNP-covered reference genome [62,114,115].

2.5. Detection of Candidate Genes and QTLs in Selective Sweep Regions

The web-based Ensembl Genes release 103 database and Ensembl BioMart data mining
tool [116–119] were utilized to retrieve chicken genes and their human orthologs based on
the boundaries of these regions as located in the GRCg7b reference assembly chromosomes.
To find primary candidate genes and other genes of interest, results for each genomic area
of selection signature that were obtained from the Ensembl BioMart browser were manually
sifted and compared to pertinent published studies. The genes from the regions supported
by at least two different techniques were considered as prioritized candidate genes (PCGs).

QTLs that are localized in the genomic regions of interest and can contain candidate
genes were searched using an in-house R script. Herewith, we identified the boundaries of
the region of interest matching to QTL genome location using a downloaded copy of the
Chicken QTLdb database [120,121].

3. Results

3.1. Between- and Within-Breed Genetic Diversity

PCA revealed that the three studied breeds formed the appropriate breed-specific
clusters (Figure 2a,b). Moreover, the USH chickens, being separated from the two meat-type
breeds, demonstrated the lowest genetic variability based on their scattering on both PCA
plots. The individuals that made up the PRW sample were more diverse than CRW and
USH. The admixture analysis resulted in the optimal number of ancestral populations at
K = 3 (Supplementary Figure S1), suggesting also that a few CRW and PRW individuals
reflected admixtures from the other breeds in this dataset, while such admixtures were
absent in USH (Figure 2c).

As follows from the data in Table 1, values of AR, UHE, and HO in the aboriginal
USH breed were significantly lower (1.6218 ± 0.0004, 0.2068 ± 0.0001, and 0.2103 ± 0.0002,
respectively; p < 0.001) than in both transboundary breeds CRW and PRW, for which
these indicators differed slightly. The UFIS inbreeding coefficients of CRW and PRW were,
however, four times higher than that of USH. PRW was superior in AR to both USH and
CRW, but in terms of HO, significant differences were found only for USH. A greater
AR-based heterogeneity identified for PRW was confirmed by the above PCA results.
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Figure 2. Genetic relationships among the three chicken breeds studied using genome-wide SNP
genotyping. (a,b) PCA plots showing the distribution of breeds and individuals in the dimensions
of two coordinates, i.e., the first (PC1; X-axis) and second (PC2; Y-axis; (a) or third (PC3; Y-axis;
(b) principal components; (c) admixture-based bar plots illustrating the proportions of individual
ancestry in the breeds under study at K = 2 (top) and K = 3 (bottom). Breeds: CRW, Cornish White;
PRW, Plymouth Rock White; USH, Ushanka.

Table 1. Genetic diversity in the three studied breeds using the basic descriptive statistics 1.

Breed 2 n HO (M ± SE) UHE (M ± SE) AR (M ± SE) UFIS [CI 95%]

CRW 20 0.2958 ± 0.0001 0.3034 ± 0.0001 1.9101 ± 0.0002 a 0.0363 [0.0358; 0.0368]
PRW 20 0.2958 ± 0.0001 0.3022 ± 0.0001 1.9187 ± 0.0002 b 0.0321 [0.0316; 0.0326]
USH 17 0.2103 ± 0.0002 c 0.2068 ± 0.0001 c 1.6218 ± 0.0004 c 0.0082 [0.0075; 0.0089]

1 n, number of individuals; HO, observed heterozygosity; M, mean value; SE, standard error; UHE, unbiased
expected heterozygosity; AR, rarefied allelic richness; UFIS, unbiased inbreeding coefficient (CI 95%, range
variation of coefficient at a confidence interval of 95%). 2 Breeds: CRW, Cornish White; PRW, Plymouth Rock
White; USH, Ushanka. The significance of pairwise values within a column is indicated by different superscripts:
a CRW vs. PRW or USH, p < 0.001; b PRW vs. CRW or USH, p < 0.001; c USH vs. CRW or PRW, p < 0.001.

3.2. Signatures of Selection

3.2.1. ZFST Statistic at Pairwise Comparison of Breeds

We searched for genomic regions that were established in the studied breeds under
the influence of natural or artificial selection. These regions were identified by estimating
the largest average FST for a sliding window. The analysis was carried out for each pair of
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breeds separately (Supplementary Figure S3, Supplementary Table S1). The analysis did
not include the GGAZ and GGAW sex chromosomes.

As can be seen from Table 2, a pairwise comparison of CRW with two other breeds
revealed six genomic regions containing three genes. For PRW and USH, there were nine
and 11 identified regions containing two and four genes, respectively.

Table 2. Mean ZFST values and blocks of SNPs joined by two or more top 0.1% neighbored SNPs at
pairwise comparison of the three breeds studied 1.

Chromosome Bin Start 2 Bin End 3 N 4 ZFST Breed Pairs Genes

GGA1 54,420,001 54,470,000 729 0.404483 CRW/PRW CHST11

GGA1 54,530,001 54,580,000 1040 0.602406 CRW/USH CHST11

GGA1 55,310,001 55,360,000 190 0.884104 CRW/USH IGF1

GGA1 55,310,001 55,360,000 291 0.597753 PRW/USH IGF1

GGA1 55,320,001 55,370,000 196 0.752325 CRW/USH IGF1

GGA1 55,320,001 55,370,000 276 0.568095 PRW/USH IGF1

GGA1 75,490,001 75,540,000 148 0.622485 CRW/USH TEAD4

GGA1 75,490,001 75,540,000 157 0.565816 PRW/USH TEAD4

GGA1 75,500,001 75,550,000 132 0.663862 CRW/USH TEAD4

GGA1 75,500,001 75,550,000 149 0.563412 PRW/USH TEAD4

GGA1 75,510,001 75,560,000 67 0.386978 CRW/PRW TEAD4

GGA1 75,510,001 75,560,000 125 0.714440 CRW/USH TEAD4

GGA1 75,510,001 75,560,000 138 0.579394 PRW/USH TEAD4

GGA1 75,520,001 75,570,000 77 0.372578 CRW/PRW TEAD4

GGA1 75,520,001 75,570,000 130 0.637783 CRW/USH TEAD4

GGA1 188,000,001 188,050,000 477 0.775700 PRW/USH GRM5

GGA1 188,010,001 188,060,000 872 0.366252 CRW/PRW GRM5

GGA1 188,010,001 188,060,000 548 0.697367 PRW/USH GRM5

GGA1 188,020,001 188,070,000 865 0.371221 CRW/PRW GRM5

GGA1 188,020,001 188,070,000 596 0.649595 PRW/USH GRM5

GGA1 188,030,001 188,080,000 866 0.35713 CRW/PRW GRM5

GGA1 188,030,001 188,080,000 649 0.592529 PRW/USH GRM5

GGA2 93,720,001 93,770,000 344 0.619266 CRW/USH CCDC102B

GGA2 93,720,001 93,770,000 360 0.599763 PRW/USH CCDC102B

GGA11 140,001 190,000 362 0.432514 CRW/PRW SMPD3

GGA11 140,001 190,000 358 0.603890 CRW/USH SMPD3

1 Breeds: CRW, Cornish White; PRW, Plymouth Rock White; USH, Ushanka. 2 Bin start, start position of sliding
window; 3 Bin end, end position of sliding window; 4 N, number of SNP variants in a window. The breed for
which a region was determined by comparison with each of the other two breeds is given in bold. Regions
identified by pairwise comparison of two breeds are highlighted in color as follows: CRW vs. PRW (red), CRW vs.
USH (green), PRW vs. USH (blue).

3.2.2. HapFLK Statistic

The hapFLK analysis was carried out for the combined sample of the three breeds.
The results are visualized as a Manhattan plot with two threshold values (Figure 3).

The results of the hapFLK analysis for the three-breed dataset included four genomic
regions on chromosomes GGA1, GGA6, GGA16, and GGA31, within or near which a total
of 68 genes were localized (Table 3, Supplementary Figure S4, Supplementary Table S2).
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Figure 3. Search for signatures of selection in genomes of the studied breeds as revealed by the
hapFLK analysis. Chicken autosomes are the values for the X-axis, and statistical significance
values (−log10 p-values) are the values for the Y-axis. The red line that indicates the threshold of
significance at p < 2.8 × 10−8 (i.e., −log10(p) > 7.55) was determined using the Bonferroni correction
and defines the strongest hapFLK regions, while the blue line indicates the threshold of significance
at p < 1 × 10−5 (i.e., −log10(p) > 5) and defines the putative hapFLK regions.

Table 3. HapFLK blocks revealed in the genomes of the studied chicken breeds 1.

Chromosome Breed
Position Length,

Mb
No. of
SNPs

Most Significant SNP Genes
Start End

GGA1

CRW 53,119,864 53,212,505 0.093 82 rs15269046 SYN3, TIMP3

PRW 53,637,245 54,504,503 0.867 569 rs314634881

NUAK1, C12orf75,
MTERF2, TMEM263,
RIC8B, RFX4, POLR3B,
CRY1, APPL2, WASHC4,
ALDH1L2, SLC41A2,
CHST11, TCP11 × 2,
CKAP4, gga-mir-12210

GGA6 USH 8,693,825 8,814,126 0.120 108 rs315872719 KROX20, ADO

GGA16
USH 2,090,051 2,170,380 0.080 190 rs737045576

IL4I1, TRIM7.1, SLURP1,
TRIM39.2, TRIM27.2,
TRIM39.1, TRIM27.1,
TRIM41, RACK1, BG1

USH 2,230,563 2,248,418 0.018 95 rs740720869 CENPA, CYP21A1

GGA31 PRW 626,104 665,706 0.040 421 31:6,534,09 –

1 Breeds: CRW, Cornish White; PRW, Plymouth Rock White; USH, Ushanka. SNP significance level: p < 1 × 10−5.
Genes in or near which the most significant SNP in the region is located are highlighted in bold. Genes identified
at a significance level of p < 2.8 × 10−8 are underlined.

3.2.3. ROH Islands Detection

Within each breed, we established that over 50% of samples had overlapping ROH
islands (Supplementary Table S3, Supplementary Figure S5, Table 4). A total of 261 homozy-
gosity islands were discovered, which were localized on 19 chromosomes. The majority of
ROH islands (95.40%) was of the USH breed.
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Table 4. The descriptive statistics summary of the homozygosity runs (ROH) 1.

Breed 2 n
ROH Length, Mb ROH No. FROH

M ± SE Min Max M ± SE Min Max M ± SE Min Max

CRW 20 102.59 ± 5.71 52.06 147.61 123 ± 6.75 62 164 0.108 ± 0.006 0.06 0.16
PRW 20 95.25 ± 7.54 36.81 155.47 116.45 ± 8.91 50 190 0.101 ± 0.008 0.04 0.16
USH 17 338.75 ± 9.31 262.60 394.09 390.94 ± 9.47 306 435 0.358 ± 0.010 0.28 0.42

1 n, number of individuals; ROH Length, the overall length of ROHs in a genome; ROH No., the number of
ROHs in a genome; FROH, inbreeding coefficient calculated based on ROHs; M, mean value; SE, standard error;
min, minimal value; and max, maximal value. 2 Breeds: CRW, Cornish White; PRW, Plymouth Rock White;
USH, Ushanka.

At the same time, the distribution analysis of the average length (Figure 4a) and the
number of homozygosity segments by length class (Figure 4b) showed that USH, like two
other studied breeds, are distinguished mainly by shorter segments, suggesting events of
longstanding inbreeding. Herewith, the values of these indicators for USH significantly
exceeded similar values for other breeds in the shortest length class; however, as the
length of the ROH fragments increases, USH was inferior to CRW and PRW. Thus, the
longest (4–8 Mb) fragments were not identified for USH at all, while the average length of
fragments of this class for CRW and PRW was 4.94 and 4.26 Mb, respectively (Figure 4a,b,
Supplementary Table S4a,b).

3ÏÌɯËÌÚÊÙÐ×ÛÐÝÌɯÚÛÈÛÐÚÛÐÊÚɯÚÜÔÔÈÙàɯÖÍɯÛÏÌɯÏÖÔÖáàÎÖÚÐÛàɯÙÜÕÚɯȹ1.'Ⱥɯƕȭ

ƕɯ

Figure 4. Descriptive statistics of the runs of homozygosity (ROHs) by ROH length class in the
studied chicken breeds: (a) Overall mean length of ROHs (Y-axis) by ROH length class (X-axis; 0.5–2,
2–4 and 4–8 Mb). (b) Mean number of ROHs (Y-axis) by ROH length class (X-axis; 0.5–2, 2–4, and
4–8 Mb). Breeds: CRW, Cornish White; PRW, Plymouth Rock White; USH, Ushanka.

Analysis of overlapping ROH islands in the three breeds revealed common homozy-
gous regions on chromosomes GGA4 and GGA33 (Table 5). Automated analysis using
the Biomart tool on Ensembl found no characterized candidate genes in these regions.
However, a manual search on the NCBI resource identified long noncoding RNA (lncRNA)
regions on chromosome GGA4. On chromosome GGA33, the genomic area identified as
the homozygous region shows the absence of a nucleotide reference sequence, which was
likely identified as a common ROH segment for all the breeds studied.
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Table 5. The ROH islands overlapping in two or more breeds.

Chromosome
Position

Length, Mb Breed 1 Genes
Start End

GGA4

70,462,265 70,739,807 0.278 CRW
ENSGALG00010011849,
ENSGALG00010011854

70,701,554 70,970,711 0.269 USH

ENSGALG00010011854,
ENSGALG00010011667,
ENSGALG00010011863,
ENSGALG00010011687

70,740,151 71,008,491 0.268 CRW
ENSGALG00010011667,
ENSGALG00010011863,
ENSGALG00010011687

70,740,151 70,753,263 0.013 PRW ENSGALG00010011667

GGA33

245,471 1,033,316 0.788 PRW –

245,535 1,033,647 0.788 CRW –

245,535 1,033,347 0.788 USH –

1 Breeds: CRW, Cornish White; PRW, Plymouth Rock White; USH, Ushanka.

3.3. Candidate Genes Affected by Selection and QTLs

We accepted the regions identified by at least two methods or in two pairs of breeds
as the areas most strongly subjected to selection pressure in different breeds. Accordingly,
the 12 partially overlapping genomic regions on eight chromosomes were established that
contained 134 genes, including 27 PCGs (Table 6, Supplementary Tables S1–S3).

Table 6. Genes within the overlapped genomic regions affected by putative selection in the studied
chicken breeds and identified by at least two methods.
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GGA1

1
53,637,245 54,504,503 0.867 PRW

CRW, USH
hapFLK

NUAK1, C12orf75,
MTERF2, TMEM263,
RIC8B, RFX4, POLR3B,
CRY1, APPL2,
WASHC4, ALDH1L2,
SLC41A2, CHST11,
TCP11X2, CKAP4,
gga-mir-12210

53,740,001 53,790,000 0.050 CRW, PRW ZFST RFX4

2
55,266,291 55,354,497 0.088 PRW

CRW, USH
ROH IGF1

55,280,001 55,330,000 0.050 CRW, USH ZFST IGF1
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Table 6. Cont.
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GGA2

3
91,027,506 92,075,494 1.048 USH

–
ROH

FAM69C, C18orf63,
CYB5A, TIMM21,
ZNF407, CNDP1,
CNDP2U1, FBXO15

91,520,001 91,570,000 0.050 CRW, USH ZFST C18orf63, CYB5A

4
92,075,780 93,852,482 1.777 USH

–
ROH

RTTNDOK6, TMX3,
SOCS6, CCDC102B,
NETO1, CBLN2,
gga-mir-1803,
gga-mir-1681,
gga-mir-6584

93,720,001 93,770,000 0.050 CRW, USH ZFST CCDC102B

GGA4

5

70,754,254 71,145,478 0.391 PRW

RUW, CRW

ROH PCDH7

70,971,231 71,354,713 0.383 USH ROH PCDH7

71,140,001 71,190,000 0.050 PRW, USH ZFST PCDH7

6
74,938,839 75,922,825 0.984 USH USH, RUW,

CRW

ROH
LCORL, NCAPG,
MED28, LAP3, CLRN2,
QDPR, LDB2

75,380,001 75,430,000 0.050 PRW, USH ZFST LCORL, NCAPG

GGA5 7

30,830,001 30,880,000 0.050 CRW, PRW

CRW, USH,
RUW, OMF

ZFST MEIS2

30,830,467 31,703,025 0.873 CRW ROH
CDIN1, DPH6,
ZNF770, AQR,
gga-mir-1718

GGA7 8

9,270,001 9,320,000 0.050 CRW, USH

CRW

ZFST DNAH7

9,281,277 10,029,387 0.748 USH ROH

SF3B1, STK17B,
HECW2, GTF3C3,
C7H2ORF66, PGAP1,
ANKRD44, COQ10B,
HSPD1, HSPE1, MOB4,
RFTN2, BOLL, PLCL1

9,670,001 9,720,000 0.050 CRW, USH ZFST ANKRD44



Genes 2024, 15, 524 12 of 28

Table 6. Cont.
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GGA10 9
5,355,392 6,359,502 1.004 USH

USH, OMF
ROH

LRRC49, THSD4,
BNIP2, GTF2A2,
GCNT3, OTUD7A,
KLF13, TRPM1,
MTMR10, FAN1,
MPHOSPH10, MCEE,
APBA2, FAM189A1,
TJP1, TARSL2, TM2D3,
ADAL, LARP6,
gga-mir-204-2,
gga-mir-1574

5,920,001 5,970,000 0.050 CRW, PRW ZFST FAM189A1

GGA14

10
8,062,881 8,813,937 0.751 USH

–
ROH

C14H16ORF52,
VWA3A, SDR42E2,
EEF2K, POLR3E,
CDR2, METTL9,
IGSF6, OTOA,
KDELR2, RPS15A,
ARL6IP1, SMG1,
CLEC19A, SYT17,
COQ7, TMC7, TMC5,
GDE1, CCP110,
ITPRIPL2,
gga-mir-1644

8,790,001 8,840,000 0.050 PRW, USH ZFST
KDELR2, DAGLB,
RAC1

11
9,118,484 10,172,206 1.054 USH

–
ROH

CARHSP1, PMM2,
TMEM186, ABAT,
METTL22, TMEM114,
C16orf72, USP7,
NUBP1, TEKT5,
EMP2, GRIN2A

9,120,001 9,170,000 0.050 PRW, USH ZFST NUBP1, TEKT5
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Table 6. Cont.
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GGA28 12
4,740,302 5,396,354 0.656 USH

RUW, CRW
ROH

CHERP, C19orf44,
CALR3, PTPRS,
KDM4B, KLF2,
AP1M1, FAM32A,
CIB3, RAB8A, TPM4,
TINCR, DPP9,
TNFAIP8L1, MED26,
SLC35E1, UHRF1,
TICAM1, FEM1A,
PLIN3, gga-mir-7-3,
gga-mir-6666, MYDGF

4,760,001 4,810,000 0.050 CRW, USH ZFST
CHERP, C19orf44,
CALR3

1 Breeds: CRW, Cornish White; PRW, Plymouth Rock White; USH, Ushanka; RUW, Russian White; OMF, Orloff
Mille Fleur. Genes identified by more than one method are highlighted in bold.

Using the Chicken QTLdb database [122,123], we searched for QTLs in the identified
genomic regions (Table 7, Supplementary Table S5). A total of 524 QTLs associated with
conformation, health, productivity, reproductive, and other phenotypic traits were identified.

Table 7. Number of QTLs associated with phenotypic traits identified in the most significant regions
presumably subject to selection pressure.

Traits
Breeds 1

Total
CRW CRW/PRW CRW/USH PRW PRW/USH USH

Exterior 2 4 1 6 4 6 23

Aggressive behavior 2 3 5

Feather density 4 2 6

Feather pecking 2 1 1 2 6

Feather pigmentation 2 2 4

Receiving feather pecking 2 2

Health 2 2

Campylobacter intestinal colonization 2 2

Physiology 11 4 15

Blood carbon dioxide level 1 1

CO2 partial pressure 3 1 4

VLDL cholesterol level 8 2 10

Production 1 3 9 2 265 368 648

Abdominal fat percentage 2 2

Abdominal fat weight 2 2 1 5

Albumen height 6 2 8
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Table 7. Cont.

Traits
Breeds 1

Total
CRW CRW/PRW CRW/USH PRW PRW/USH USH

Average daily gain 16 69 85

Body slope length 1 1

Body weight 1 1 27 107 136

Body weight gain 1 1

Bursa of Fabricius weight 3 3

Carcass fat content 3 1 4

Carcass weight 12 12

Chest width 4 1 5

Claw percentage 2 2

Claw weight 8 8

Drumstick and thigh muscle
percentage

1 1

Drumstick and thigh muscle weight 1 1

Drumstick and thigh percentage 1 1

Drumstick and thigh weight 1 1

Egg number 1 2 3

Egg production rate 3 1 4

Egg weight 128 63 191

Eggshell weight 1 1

Feed conversion ratio 2 12 46 60

Feed intake 3 3

Feet weight 5 5

Femur area 3 1 4

Femur length 3 1 4

Gizzard weight 12 5 17

Head weight 1 1

Heart weight 12 5 17

Liver weight 12 5 17

Muscle dry matter content 1 1

Proventriculus weight 12 5 17

Shank diameter 1 1

Shank length 3 3 6

Spleen weight 1 1

Tibia length 3 2 5

Tibia weight 3 2 5

Wing weight 1 1

Yolk weight 6 2 8

Reproduction 28 13 41

Oviduct length 12 5 17

Oviduct weight 16 8 24

Total 3 7 21 8 297 393 729

1 Breeds: CRW, Cornish White; PRW, Plymouth Rock White; USH, Ushanka.

As follows from Table 7, the largest number of QTLs was identified in USH (507),
whereas PRW and CRW had 12 and 5 QTLs, respectively. Moreover, a significant portion
of the QTLs were associated with production traits and reproductive characters (475 and
22, respectively). Notably, QTLs associated with indicators of health (2) and physiological
processes (7) were identified in USH selected for cold tolerance [62].
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4. Discussion

4.1. Genetic Diversity among the Breeds Studied

The meat industry in general and the poultry sector specifically essentially rely on
the evaluation, characterization, and utilization of genetic diversity inherent in various
breeds and lines (e.g., [124–129]). In this whole-genome resequencing study, we examined
the genetic diversity features in the two divergently selected transboundary meat-type
breeds, CRW and PRW, used for producing the Smena 8 broiler cross and compared
to the aboriginal cold-tolerant Russian breed of USH. The latter was genetically most
distant from the two other breeds, as identified by PCA (Figure 2a,b) and confirmed by
the admixture/ancestry analysis (Figure 2c). At K = 2, CRW and PRW demonstrated a
common ancestry that was different from that of USH, and most likely corresponds to the
meat (Asiatic) type in accordance with the evolutionary model of chicken breed origin
and formation [67,130]. At K = 3, the genotyped CRW and PRW chickens split into two
obvious clusters (Figure 2c). These can be attributed to the meat (CRW) and dual-purpose
(PRW) types according to the traditional classification and phenotypic clustering models,
as described in Larkina et al. [59] and Kochish et al. [67].

On the other hand, the PRW and, to a lesser degree, CRW chickens showed signs of
admixture from the other breeds in the explored dataset. Overall, USH turned out to be
more consolidated genetically and less diverse (Table 1) than PRW and CRW. Also, the
allelic diversity in PRW was slightly, but significantly, greater than that in CRW. This is
likely due to the history of the creation of this breed and may be a consequence of the
use of a larger number of ancestral breeds and lines in developing PRW [131] compared
to CRW. Originally, CRW descended from the English local game chickens and Asiatic
game (Asil, White Malay, and Indian Game) and meat-type (Cochin) breeds. The initial
stock of breeds for developing PRW was somewhat more diverse and included chickens of
Asiatic (Java Black, Brahma, Cochin White and Cochin Buff), North American (Dominique),
and European (White-faced Black Spanish) origins [67]. The unique genetic makeup and
diversity peculiarities of USH we established here were well in line with our previous
genome-wide surveys of this old Russian breed [62,63] relative to the genomes of CRW,
as well as the Orloff Mille Fleur [59,62,132–136], Russian White [50,51,57,58,137–140], and
other chicken breeds [132,141–143].

4.2. Inbreeding and ROH Characterization

In a long-term breeding experiment in PRW chickens selected for body weight, Harri-
son et al. [131] established that, even when inbreeding gradually accumulates and reduces
genetic diversity, heterozygosity persists to enable additional responses to selection. Judg-
ing from the UFIS inbreeding coefficients in our study, their significant and much larger
values in CRW and PRW perhaps resulted from greater selection pressure in these two
transboundary meat-type breeds compared to the local primitive USH fowls that have
not been subject to strong artificial selection. On the other hand, the significantly higher
number of ROH islands found in USH, as compared to the two other breeds, was likely
due to a higher level of inbreeding assessed via FROH in this breed (Table 4), which may
also be a consequence of the small size of the existing USH population.

In our previous publication [62], where USH and CRW were also studied, USH was
superior to three other breeds, including CRW, in terms of UFIS inbreeding coefficient. A
similar overall pattern was observed for ROH-based inbreeding. In this work, UFIS turned
out to be smaller for USH (about four times less than for CRW and PRW). It was nominally
equal to 0.0082, i.e., almost seven times lower than in the previous study (0.055; [62]).

To interpret these apparent inconsistencies in inbreeding estimates, we can assume that
this may be due to the chosen genome-wide assessment tool. In the previous article [62],
we had an SNP array containing markers that were polymorphic for the breeds on the
basis of which it was created. In USH, these same loci could be monomorphic, hence the
increased homozygosity. The density of the SNP chip and the size of the examined USH
sample can also be important when comparing the two experiments. In the present study,
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there were about 12.5 M SNPs vs. 50 K on the SNP chip, and the USH sample was smaller
(17 vs. 40). We think this may have shifted the FROH inbreeding coefficients in the current
survey compared with the data in Romanov et al. [62].

In addition, we would also approach the interpretation of UFIS and FROH results
differently. In the first case, we can talk about selection pressure for a limited number
of traits, which, in turn, leads to positive selection in favor of polygenic loci involved in
the formation of selected traits, increasing homozygosity at these loci [144–147]. Since
the loci are polygenic, an increase in homozygosity, in most cases, will not be associated
with the formation of homozygous haplotypes (only for SNPs located at close distances,
that is, due to the hitchhiking effect). However, we introduced a minimum ROH length
filter (0.5 Mb) just to exclude short segments resulting from concatenation. In the case of
USH, there is no selection and there is virtually no selection pressure. This means that
almost all USH individuals produced during the population propagation are left in the
next generation, with the exception of the very weak. Moreover, FROH is a more realistic
measure of inbreeding. That is, the greater number of longer ROHs in USH (Figure 4b)
suggests that this breed has been subject to a more recent inbreeding. This is not surprising,
as the USH population has been maintained at 100–200 hens and about 25 roosters for many
years, suggesting a higher likelihood of inbreeding. The two commercial breeds surveyed,
CRW and PRW, are significantly more numerous and are maintained with over 1000 birds
in each line, i.e., over 2000 per breed, hence their lower inbreeding degree. Thus, because
FROH is calculated directly from the genome homozygosity of individuals, it provides a
more accurate estimate of the inbreeding status within a breed.

4.3. Prioritized Candidate Genes within Selective Sweeps

The 12 genomic regions containing the identified selection footprints harbored a total
of 27 PCGs that will be described below by chromosome and in terms of their relevance to
economically and physiologically important traits in the breeds and lines studied. Notably,
this study was consistent with our previous findings presented by Abdelmanova et al. [58]
and Romanov et al. [62] for eight selective sweep regions on GGA1, GGA4, GGA5, GGA7,
GGA10, and GGA28 in the genomes of CRW, USH, RUW, and OMF chickens (Table 6).
On the other hand, we discovered four new genomic regions under selection pressures on
GGA2 and GGA14.

4.3.1. GGA1

On this chromosome, we found the NUAK1 (NUAK family kinase 1) gene known as
a potential regulator for chicken plumage pigmentation that overlapped with the respec-
tive QTLs [148]. In humans, it is broadly expressed in various tissues, with the highest
upregulation in brain [149]. To the best of our knowledge, another nearby gene, RFX4
(regulatory factor X4), has not been functionally described yet in chickens or other birds.
However, its human homolog encodes a testis-specific DNA-binding protein [150] and has
a restricted expression toward the brain and, especially, the testis [149], suggesting it as a
good reproductive and behavioral candidate gene in chickens.

The CHST11 (carbohydrate sulfotransferase 11) gene is a reported candidate for
plumage color in the chicken that is associated with aggressive behavior, and it is over-
lapped with the corresponding QTLs [151]. It is also a strong candidate gene for body
weight at 35 days in broiler chickens [152], which is also relevant for our study. This gene
has a ubiquitous expression in human tissues [149]. The CHST11 enzyme is responsible for
catalyzing the chondroitin sulfate that is found on the surface of many cells and extracellular
matrix and is the main proteoglycan in cartilage, which might also be important for broiler
growth and development. On GGA1, we also identified another important growth and
development candidate factor, IGF1 (insulin like growth factor 1). Previously, it was linked
to a signal of selective sweeps, being associated with abdominal fat weight/deposition,
body weight, and other traits in chickens [153–156]. Its human homolog was recognized by
a broad expression in various tissues [149].



Genes 2024, 15, 524 17 of 28

4.3.2. GGA2

Among the PCGs found on this chromosome, there was C18orf63, which encodes an
uncharacterized protein in chickens. However, its human homolog (chromosome 18 open
reading frame 63) has a restricted, but very high, expression exclusively toward testis
tissue [149], suggesting that C18orf63 may also play a certain role in chicken reproduction.
The CYB5A (cytochrome b5 type A, or epididymis secretory sperm binding protein type
1 cyt-b5) gene is related to heme binding. In humans, it demonstrates a broad expression in
various tissues, especially in liver and kidney [149]. Additionally, it is also described as a
rheumatoid arthritis susceptibility gene and is also involved in androgen synthesis [157],
thus being supposedly important for functioning of skeletal and reproductive systems.
The third PCG revealed on GGA2 was CCDC102B (coiled-coil domain containing 102B). It
enables protein binding and shows a broad expression in placenta, lung, and other human
tissues [149].

4.3.3. GGA4

This chromosome also encapsulates several significant PCGs. One of them, PCDH7
(protocadherin 7), is a positional candidate gene associated with internal organ traits in
chickens and located within a QTL for intestine length and gizzard weight; it is differentially
expressed in the epidermis of the feather bud [158,159]. In human tissues, it is relevant
to calcium ion binding and cell adhesion and shows a broad expression, especially in the
brain [149].

LCORL (ligand dependent nuclear receptor corepressor like) is a candidate gene
associated with slaughter traits, being positionally associated with internal organ traits
in chickens and located within a QTL for intestine length and gizzard weight. It is also
a possible candidate responsible for growth and body weight and a reported candidate
gene for carcass and eviscerated weight and egg quality traits [57,158,160–163]. Its human
homolog is involved in spermatogenesis, skeletal frame size, and adult height, with a
ubiquitous expression in different tissues and the most upregulation in the testis [149]. The
NCAPG (non-SMC condensin I complex subunit G) gene is involved in mitotic chromosome
condensation and may regulate chicken bone growth and development. It is known as a
candidate gene for bone size/mass and slaughter traits, with its SNP being also associated
with egg albumen quality and other egg traits [160,163–166]. NCAPG has a broad expression
in bone marrow, lymph node, testis, and other human tissues [149]. Because of the high
importance of the NCAPG-LCORL locus due to its association with performance and other
phenotypic traits, its genetic variation was previously thoroughly explored in chickens of
commercial (selected for egg and meat production), local, and imported fancy breeds [59,60].
This investigation suggested prevailed genotypes and specific LD structure at this locus
across the studied breeds depending on their utility type and origin.

4.3.4. GGA7

One PCG, ANKRD44 (ankyrin repeat domain 44), enabling protein binding was found
within a selective sweep on this chromosome. This is a candidate gene for dermatological
diseases/conditions and is associated with amino acid changes [167]. In humans, its broad
expression was reported in various tissues, especially in the lymph node, appendix, and
spleen [149].

4.3.5. GGA10

The FAM189A1 (family with sequence similarity 189 member A1) gene for an unchar-
acterized protein located in membrane is still understudied in the chicken. However, its
human homolog, ENTREP2 (endosomal transmembrane epsin interactor 2), is expressed in
various tissues, with a biased upregulation in the brain [149]. Another PCG, TJP1 (tight
junction protein 1), related to cell adhesion molecule binding was also shown to be associ-
ated with decreased fertility in aged laying breeders [168]. It has a ubiquitous expression in
human tissues, especially in the testis, placenta, and brain [149].
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4.3.6. GGA14

This chromosome harbors the KDELR2 (KDEL endoplasmic reticulum protein reten-
tion receptor 2) gene. The respective protein enables endoplasmic reticulum retention
sequence binding. Human KDELR2 is associated with osteogenesis disorder [169] and has
demonstrated a ubiquitous expression in the placenta, stomach, and other tissues [149].
NUBP1 (nucleotide binding protein 1), involved in ATP-dependent iron–sulfur cluster
assembly, is known as a host protein that interacts with duck enteritis virus [170]. The
NUBP1 gene has also a ubiquitous expression in adrenal, heart, lymph node, and other
human tissues [149].

TEKT5 (tektin 5) is a nondescribed gene in chickens; its human homolog, however,
is involved in cilium assembly and movement, with a restricted expression toward the
testis [149]. One more PCG, EMP2 (epithelial membrane protein 2), is responsible for the
corresponding plasma membrane component. It is slightly expressed in various human
tissues, with a biased upregulation in the lung, skin, and esophagus [149].

4.3.7. GGA28

A number of PCGs were revealed within one genomic region affected by putative
selection on this chromosome and can represent a relevance and significance for describing
economically and physiologically important traits in the breeds and lines studied. Of note,
five of them, i.e., CHERP (calcium homeostasis endoplasmic reticulum protein), CALR3
(calreticulin 3), PTPRS (protein tyrosine phosphatase, receptor type S), KLF2 (Kruppel like
factor 2), and RAB8A (RAB8A, member of the RAS oncogene family), have been established
as candidates for plasma very-low-density lipoprotein concentration in the chicken [171].
In addition, the CHERP gene is known for enabling transmembrane transporter binding
activity and RNA binding. It is also typified by ubiquitous expression in human tissues,
especially in the testis, spleen, and ovary [149]. CALR3 is responsible for the respective
protein that participates in calcium ion binding and may be associated with obesity in
chickens [172]. Its human homolog is marked by a restricted expression exclusively toward
the testis [149]. The PTPRS gene involved in protein binding and dephosphorylation also
has a broad expression in human tissues, especially in fat, the brain, and the prostate [149].
KLF2 involved in regulation of transcription by RNA polymerase II is additionally related
to angiogenesis at tibial lesions in broilers, is considered as a chick connective-tissue-
associated transcription factor, and may partly inhibit chicken adipogenesis [173–175]. Its
human homolog plays roles in many processes during development and disease and is
recognized by a broad expression in various tissues, especially in fat and the ovary [149].
The RAB8A gene facilitates GTP binding and is distinguished by ubiquitous expression in
human tissues, with a higher activity in digestive and immune systems [149].

We also discovered some other PCGs on GGA28. In particular, C19orf44, which encodes
an uncharacterized chicken protein, is a homolog to the human C19orf44 (chromosome
19 open reading frame 44) gene, with the latter being defined by ubiquitous expression
in different human tissues, especially in the testis and ovary [149]. The FAM32A (family
with sequence similarity 32 member A) gene product is localized in the nucleolus, being
involved in RNA binding activity and, presumably, the apoptotic process. Its human
homolog is characterized by ubiquitous expression in digestive and excretory systems
and in other tissues [149]. The protein encoded by the CIB3 (calcium and integrin binding
family member 3) gene enables calcium ion binding and has a low expression in human
tissues, with a slightly higher expression in the testis [149]. The TPM4 (tropomyosin 4) gene
is related to actin filament binding and muscle contraction, with ubiquitous expression in
human tissues and a higher synthesis level in gall and urinary bladders [149]. The TINCR
(TINCR ubiquitin domain containing) gene is a part of the protein binding pathway and is
expressed in several human tissues, with a biased upregulation in the skin, placenta, and
esophagus [149].

In summation, the above description of the identified chicken PCGs and the respective
functional projection from their human homologs suggest their relevance for artificial
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selection signatures in the genomes of the transboundary broiler breeds, CRW and PRW, and
the primitive native breed of USH. In terms of functionality and association, the 27 PCGs can
be attributed to such key economically and physiologically important trait clusters as body
weight (CHST11, IGF1, LCORL), growth and development (IGF1, CYB5A, PCDH7, LCORL,
NCAPG, KDELR2, KLF2), muscles (TPM4), fat metabolism and deposition (IGF1, CHERP,
CALR3, PTPRS, KLF2, RAB8A), exterior (NUAK1, CHST11, PCDH7, ANKRD44, EMP2,
TINCR), behavior (NUAK1, RFX4, CHST11, PCDH7, FAM189A1, TJP1, TEKT5, PTPRS),
immunity (NCAPG, ANKRD44, KDELR2, NUBP1, CHERP, KLF2, RAB8A), reproduction
(RFX4, C18orf63, CYB5A, CCDC102B, LCORL, NCAPG, TJP1, KDELR2, TEKT5, CHERP,
CALR3, PTPRS, C19orf44, CIB3, TINCR), circulatory (NUBP1, TEKT5), digestive (KDELR2,
EMP2, RAB8A, FAM32A, TPM4, TINCR), excretory (CYB5A, NUBP1, FAM32A, TPM4), and
respiratory (CCDC102B, EMP2) systems (Table 6). These results largely overlap with the
QTLs found within the determined genomic regions (Table 7, Supplementary Table S5).

Most sweep regions and the conforming 15 PCGs were shared between two or three
breeds, suggesting possible similar selective pressure trajectories in their selection history.
Partially, this sharing pattern might also be due to common ancestral breeds used for the
formation of the three chicken composite breeds studied and occasional gene introgres-
sion [176,177], as can be seen from their peculiar admixture-based plots in our investigation
(Figure 2c). On the other hand, there were 12 PCGs mostly specific for one breed, PRW, and
especially USH, that may reflect certain differences in their distinct genomic architecture.
Further in-depth studies will be required to validate shared and breed-specific PCGs that
can be linked to the traits under selection pressure.

5. Conclusions

In this study, we examined the genomic architecture and diversity of the grandparent
lines subject to high selection pressure for meat production and, contrastingly, in an abo-
riginal Russian chicken breed of USH using whole-genome resequencing data. Probably
because of a small population size and peculiar breed history, USH was less heterozy-
gous and diverse and showed a higher genetic distinctiveness relative to two commercial
broiler breeds, CRW and PRW. We also dissected 12 regions of selective signatures and
the respective candidate genes in these three breeds. To reveal regions under selective
pressure, we employed three techniques based on ZFST estimation, hapFLK procedure, and
ROH assessment.

The description of the found PCGs in chickens and the corresponding functional
projection from human homologs point out that these genes may be relevant for signals
of artificial selection seen in the genomes of the transboundary broiler breeds, CRW and
PRW, as well as the old local USH breed. Functionally, the 27 PCGs can be associated
with important trait clusters that are both physiologically and economically significant,
including body weight (CHST11, IGF1, LCORL), growth and development (CYB5A, PCDH7,
NCAPG, KDELR2, KLF2, etc.), muscles (TPM4), fat metabolism and deposition (CHERP,
CALR3, PTPRS, RAB8A, etc.), exterior (NUAK1, ANKRD44, EMP2, TINCR, etc.), behavior
(RFX4, FAM189A1, TJP1, TEKT5, etc.), immunity (NUBP1, etc.), reproduction (C18orf63,
etc.), and digestion, as well as circulatory, excretory, and respiratory systems. The majority
of these findings coincide with the QTLs present in the identified chromosomal areas. The
information reported here will serve as the basis for detailing the genomic architecture and
selection footprints in these breeds and lines and further implementing genomic selection
aimed at improving productive and other phenotypic traits in chickens [178–180].

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes15040524/s1, Figure S1: Estimation of the number of assumed
ancestral populations (K) on the basis of the lowest CV error; Figure S2: The relationship between
the LD correlation coefficient and the distance between marker pairs; Figure S3: Manhattan plots for
genomic distribution of ZFST values estimated between the CRW, PRW, and USH breeds; Figure S4:
Plots of the chromosome areas containing the hapFLK regions; Figure S5: The percentage of SNPs
within an ROH island on chromosomes GGA1–GGA15, GGA17–GGA24, GGA26–GGA28, GGA33,
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and GGA34; Table S1: Mean ZFST values and blocks of SNPs joined by two or more top 0.1%
neighbored SNPs at pairwise comparison of the three breeds; Table S2: HapFLK regions identified
in genome of the studied chicken populations; Table S3: ROH islands identified in genome of the
studied chicken populations; Table S4: Number (a) and overall length of ROHs (b) by ROH length
class; Table S5: QTLs detected in identified regions.
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