265 research outputs found
Eects of State of Charge on the Physical Characteristics of V(IV)/V(V) Electrolytes and Membrane for the All Vanadium Flow Battery
The VO2+/VO2+ redox couple commonly employed on the positive terminal of the all-vanadium redox flow battery was investigated at various states of charge (SOC) and H2SO4 supporting electrolyte concentrations. Electron paramagnetic resonance was used to investigate the VO2+ concentration and translational and rotational diffusion coefficient (DT, DR) in both bulk solution and Nafion membranes. Values of DT and DR were relatively unaffected by SOC and on the order of 10−10 m2s−1. Cyclic voltammetry measurements revealed that no significant changes to the redox mechanism were observed as the state of charge increased; however, the mechanism does appear to be affected by H2SO4 concentration. Electron transfer rate (k0) increased by an order of magnitude (10−6 ms−1 to 10−8 ms−1) for each H2SO4 concentrations investigated (1, 3 and 5 M). Analysis of cyclic voltammetry switching currents suggests that the technique might be suitable for fast determination of state of charge if the system is well calibrated. Membrane uptake and permeability measurements show that vanadium absorption and crossover is more dependent on both acid and vanadium concentration than state of charge. Vanadium diffusion in the membrane is about an order of magnitude slower (~10−11 m2s−1) than in solution (~10−10 m2s−1)
The Effect of Sulfuric Acid Concentration on the Physical and Electrochemical Properties of Vanadyl Solutions
The effects of sulfuric acid concentration in VO2+ solutions were investigated via electrochemical methods and electron paramagnetic resonance. Viscosity of solutions containing 0.01 M VOSO4 in 0.1–7 M H2SO4 was measured. Diffusion coefficients were independently measured via electrochemical methods and EPR with excellent agreement between the techniques employed and literature values. Analysis of cyclic voltammograms suggest the oxidation of VO2+ to VO2+ is quasi-reversible at high H2SO4 concentrations (\u3e5 mol/L) and approaching irreversible at lower H2SO4 concentrations. Further analysis reveals a likely electrochemical/chemical (EC) mechanism where the H2SO4 facilitates the electrochemical step but hinders the chemical step. Fundamental insights of VO2+/H2SO4 solutions can lead to a more comprehensive understanding of the concentration effects in electrolyte solutions
Nanometer-scale mapping of irreversible electrochemical nucleation processes on solid Li-ion electrolytes
Electrochemical processes associated with changes in structure, connectivity or composition typically proceed via new phase nucleation with subsequent growth of nuclei. Understanding and controlling reactions requires the elucidation and control of nucleation mechanisms. However, factors controlling nucleation kinetics, including the interplay between local mechanical conditions, microstructure and local ionic profile remain inaccessible. Furthermore, the tendency of current probing techniques to interfere with the original microstructure prevents a systematic evaluation of the correlation between the microstructure and local electrochemical reactivity. In this work, the spatial variability of irreversible nucleation processes of Li on a Li-ion conductive glass-ceramics surface is studied with ~30 nm resolution. An increased nucleation rate at the boundaries between the crystalline AlPO4 phase and amorphous matrix is observed and attributed to Li segregation. This study opens a pathway for probing mechanisms at the level of single structural defects and elucidation of electrochemical activities in nanoscale volumes
Recommended from our members
In situ tracking of the nanoscale expansion of porous carbon electrodes
Electrochemical double layer capacitors (EDLC) are rapidly emerging as a promising energy storage technology offering extremely large power densities. Despite significant experimental progress, nanoscale operation mechanisms of the EDLCs remain poorly understood and it is difficult to separate processes at multiple time and length scales involved in operation including that of double layer charging and ionic mass transport. Here we explore the functionality of EDLC microporous carbon electrodes using a combination of classical electrochemical measurements and scanning probe microscopy based dilatometry, thus separating individual stages in charge/discharge processes based on strain generation. These methods allowed us to observe two distinct modes of EDLC charging, one fast charging of the double layer unassociated with strain, and another much slower mass transport related charging exhibiting significant sample volume changes. These studies open the pathway for the exploration of electrochemical systems with multiple processes involved in the charge and discharge, and investigation of the kinetics of those processes
Structure of the catalytic sites in Fe/N/C-catalysts for O-2-reduction in PEM fuel cells
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Fe-based catalytic sites for the reduction of oxygen in acidic medium have been identified by 57Fe Mössbauer spectroscopy of Fe/N/C catalysts containing 0.03 to 1.55 wt% Fe, which were prepared by impregnation of iron acetate on carbon black followed by heat-treatment in NH3 at 950 °C. Four different Fe-species were detected at all iron concentrations: three doublets assigned to molecular FeN4-like sites with their ferrous ions in a low (D1), intermediate (D2) or high (D3) spin state, and two other doublets assigned to a single Fe-species (D4 and D5) consisting of surface oxidized nitride nanoparticles (FexN, with x ≤ 2.1). A fifth Fe-species appears only in those catalysts with Fe-contents ≥0.27 wt%. It is characterized by a very broad singlet, which has been assigned to incomplete FeN4-like sites that quickly dissolve in contact with an acid. Among the five Fe-species identified in these catalysts, only D1 and D3 display catalytic activity for the oxygen reduction reaction (ORR) in the acid medium, with D3 featuring a composite structure with a protonated neighbour basic nitrogen and being by far the most active species, with an estimated turn over frequency for the ORR of 11.4 e− per site per s at 0.8 V vs. RHE. Moreover, all D1 sites and between 1/2 and 2/3 of the D3 sites are acid-resistant. A scheme for the mechanism of site formation upon heat-treatment is also proposed. This identification of the ORR-active sites in these catalysts is of crucial importance to design strategies to improve the catalytic activity and stability of these materials
DNA Encoding an HIV-1 Gag/Human Lysosome-Associated Membrane Protein-1 Chimera Elicits a Broad Cellular and Humoral Immune Response in Rhesus Macaques
Previous studies of HIV-1 p55Gag immunization of mice have demonstrated the usefulness of targeting antigens to the cellular compartment containing the major histocompatibility complex type II (MHC II) complex molecules by use of a DNA antigen formulation encoding Gag as a chimera with the mouse lysosome-associated membrane protein (mLAMP/gag). In the present study, we have analyzed the magnitude and breadth of Gag-specific T-lymphocyte and antibody responses elicited in Rhesus macaques after immunization with DNA encoding a human LAMP/gag (hLAMP/gag) chimera. ELISPOT analyses indicated that the average Gag-specific IFN-γ response elicited by the hLAMP/gag chimera was detectable after only two or three naked DNA immunizations in all five immunized macaques and reached an average of 1000 spot-forming cells (SFC)/10(6) PBMCs. High IFN-γ ELISPOT responses were detected in CD8(+)-depleted cells, indicating that CD4(+) T-cells play a major role in these responses. The T-cell responses of four of the macaques were also tested by use of ELISPOT to 12 overlapping 15-amino acids (aa) peptide pools containing ten peptides each, encompassing the complete Gag protein sequence. The two Mamu 08 immunized macaques responded to eight and twelve of the pools, the Mamu B01 to six, and the other macaque to five pools indicating that the hLAMP/gag DNA antigen formulation elicits a broad T-cell response against Gag. Additionally, there was a strong HIV-1-specific IgG response. The IgG antibody titers increased after each DNA injection, indicating a strong amnestic B-cell response, and were highly elevated in all the macaques after three immunizations. Moreover, the serum of each macaque recognized 13 of the 49 peptides of a 20-aa peptide library covering the complete Gag amino acid sequence. In addition, HIV-1-specific IgA antibodies were present in the plasma and external secretions, including nasal washes. These data support the findings of increased immunogenicity of genetic vaccines encoded as LAMP chimeras, including the response to DNA vaccines by non-human primates
Limiting esophageal temperature in radiofrequency ablation of left atrial tachyarrhythmias results in low incidence of thermal esophageal lesions
<p>Abstract</p> <p>Background</p> <p>Atrio-esophageal fistula formation following radiofrequency ablation of left atrial tachyarrhythmias is a rare but devastating complication. Esophageal injuries are believed to be precursors of fistula formation and reported to occur in up to 47% of patients. This study investigates the incidence of esophageal lesions when real time esophageal temperature monitoring and temperature limitation is used.</p> <p>Methods</p> <p>184 consecutive patients underwent open irrigated radiofrequency ablation of left atrial tachyarrhythmias. An esophageal temperature probe consisting of three independent thermocouples was used for temperature monitoring. A temperature limit of 40°C was defined to interrupt energy delivery. All patients underwent esophageal endoscopy the next day.</p> <p>Results</p> <p>Endoscopy revealed ulcer formation in 3/184 patients (1.6%). No patient developed atrio-esophageal fistula. Patient and disease characteristics had no influence on ulcer formation. The temperature threshold of 40°C was reached in 157/184 patients. A temperature overshoot after cessation of energy delivery was observed frequently. The mean maximal temperature was 40.8°C. Using a multiple regression analysis creating a box lesion that implies superior- and inferior lines at the posterior wall connecting the right and left encircling was an independent predictor of temperature. Six month follow-up showed an overall success rate of 78% documented as sinus rhythm in seven-day holter ECG.</p> <p>Conclusion</p> <p>Limitation of esophageal temperature to 40°C is associated with the lowest incidence of esophageal lesion formation published so far. This approach may contribute to increase the safety profile of radiofrequency ablation in the left atrium.</p
Practitioners' Perceptions of the Soccer Extra-Time Period: Implications for Future Research
Qualitative research investigating soccer practitioners’ perceptions can allow researchers to create practical research investigations. The extra-time period of soccer is understudied compared to other areas of soccer research. Using an open-ended online survey containing eleven main and nine sub questions, we gathered the perceptions of extra-time from 46 soccer practitioners, all working for different professional soccer clubs. Questions related to current practices, views on extra-time regulations, and ideas for future research. Using inductive content analysis, the following general dimensions were identified: ‘importance of extra-time’, ‘rule changes’, ‘efficacy of extra-time hydro-nutritional provision’, ‘nutritional timing’,
‘future research directions’, ‘preparatory modulations’ and ‘recovery’. The majority of practitioners (63%) either agreed or strongly agreed that extra-time is an important period
for determining success in knockout football match-play. When asked if a fourth substitution
should be permitted in extra-time, 67% agreed. The use of hydro-nutritional strategies prior
to extra-time was predominately considered important or very important. However; only
41% of practitioners felt that it was the most important time point for the use of nutritional
products. A similar number of practitioners account (50%) and do not (50%) account for the
potential of extra-time when training and preparing players and 89% of practitioners stated that extra-time influences recovery practices following matches. In the five minute break prior to extra-time, the following practices (in order of priority) were advocated to players: hydration, energy provision, massage, and tactical preparations. Additionally, 87% of practitioners advocate a particular nutritional supplementation strategy prior to extra-time. In order of importance, practitioners see the following as future research areas: nutritional interventions, fatigue responses, acute injury risk, recovery modalities, training paradigms, injury epidemiology, and environmental considerations. This study presents novel insight into the practitioner perceptions of extra-time and provides information to readers about current
applied practices and potential future research opportunities
Transmission electron microscopy for characterization of acrosomal damage after Percoll gradient centrifugation of cryopreserved bovine spermatozoa
The objective of this study was to characterize acrosomal ultrastructure following discontinuous Percoll gradient centrifugation of cryopreserved bovine sperm. Semen was collected from six bulls of different breeds and three ejaculates per bull were evaluated. Frozen semen samples were thawed and the acrosomal region of sperm cells was evaluated by transmission electron microscopy (TEM) before (n = 18) and after (n = 18) Percoll centrifugation. The evaluation of 20 sperm heads from each of the 36 samples analyzed ensured that a large number of cells were investigated. The data were subjected to analysis of variance at a level of significance of 5%. Percoll centrifugation reduced the percentage of sperm exhibiting normal acrosomes (from 61.77 to 30.24%), reduced the percentage of sperm presenting atypical acrosome reactions (from 28.38 to 4.84%) and increased the percentage of sperm exhibiting damage in the acrosome (from 6.14 to 64.26%). The percentage of sperm with typical acrosome reactions was not significantly different before (3.70%) and after (0.67%) centrifugation. TEM distinguished four different types of acrosomal status and enabled ultrastructural characterization of acrosomal injuries. The percentage of sperm exhibiting normal acrosomes decreased and damage in the acrosome was the most frequent acrosomal injury with the Percoll gradient centrifugation protocol utilized
Maternal LAMP/p55gagHIV-1 DNA Immunization Induces In Utero Priming and a Long-Lasting Immune Response in Vaccinated Neonates
Infants born to HIV-infected mothers are at high risk of becoming infected during gestation or the breastfeeding period. A search is thus warranted for vaccine formulations that will prevent mother-to-child HIV transmission. The LAMP/gag DNA chimeric vaccine encodes the HIV-1 p55gag fused to the lysosome-associated membrane protein-1 (LAMP-1) and has been shown to enhance anti-Gag antibody (Ab) and cellular immune responses in adult and neonatal mice; such a vaccine represents a new concept in antigen presentation. In this study, we evaluated the effect of LAMP/gag DNA immunization on neonates either before conception or during pregnancy. LAMP/gag immunization of BALB/c mice before conception by the intradermal route led to the transfer of anti-Gag IgG1 Ab through the placenta and via breastfeeding. Furthermore, there were an increased percentage of CD4+CD25+Foxp3+T cells in the spleens of neonates. When offspring were immunized with LAMP/gag DNA, the anti-Gag Ab response and the Gag-specific IFN-γ-secreting cells were decreased. Inhibition of anti-Gag Ab production and cellular responses were not observed six months after immunization, indicating that maternal immunization did not interfere with the long-lasting memory response in offspring. Injection of purified IgG in conjunction with LAMP/gag DNA immunization decreased humoral and cytotoxic T-cell responses. LAMP/gag DNA immunization by intradermal injection prior to conception promoted the transfer of Ab, leading to a diminished response to Gag without interfering with the development of anti-Gag T- and B-cell memory. Finally, we assessed responses after one intravenous injection of LAMP/gag DNA during the last five days of pregnancy. The intravenous injection led to in utero immunization. In conclusion, DNA vaccine enconding LAMP-1 with Gag and other HIV-1 antigens should be considered in the development of a protective vaccine for the maternal/fetal and newborn periods
- …