11 research outputs found

    The miniJPAS survey: A search for extreme emission-line galaxies

    Get PDF
    This is an Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Context. Galaxies with extreme emission lines (EELGs) may play a key role in the evolution of the Universe, as well as in our understanding of the star formation process itself. For this reason an accurate determination of their spatial density and fundamental properties in different epochs of the Universe will constitute a unique perspective towards a comprehensive picture of the interplay between star formation and mass assembly in galaxies. In addition to this, EELGs are also interesting in order to explain the reionization of the Universe, since their interstellar medium (ISM) could be leaking ionizing photons, and thus they could be low z, analogous of extreme galaxies at high z. Aims. This paper presents a method to obtain a census of EELGs over a large area of the sky by detecting galaxies with rest-frame equivalent widths ≄300 Å in the emission lines [O II]λλ3727,3729Å, [O III]λ5007Å, and Hα. For this, we aim to use the J-PAS survey, which will image an area of ≈8000 deg2 with 56 narrow band filters in the optical. As a pilot study, we present a methodology designed to select EELGs on the miniJPAS images, which use the same filter dataset as J-PAS, and thus will be exportable to this larger survey. Methods. We make use of the miniJPAS survey data, conceived as a proof of concept of J-PAS, and covering an area of ≈1 deg2. Objects were detected in the rSDSS images and selected by imposing a condition on the flux in a given narrow-band J-PAS filter with respect to the contiguous ones, which is analogous to requiring an observed equivalent width larger than 300 Å in a certain emission line within the filter bandwidth. The selected sources were then classified as galaxies or quasi-stellar objects (QSOs) after a comparison of their miniJPAS fluxes with those of a spectral database of objects known to present strong emission lines. This comparison also provided a redshift for each source, which turned out to be consistent with the spectroscopic redshifts when available (|Δz/(1 + zspec)| ≀ 0.01). Results. The selected candidates were found to show a compact appearance in the optical images, some of them even being classified as point-like sources according to their stellarity index. After discarding sources classified as QSOs, a total of 17 sources turned out to exhibit EW0 ≄ 300 Å in at least one emission line, thus constituting our final list of EELGs. Our counts are fairly consistent with those of other samples of EELGs in the literature, although there are some differences, which were expected due to biases resulting from different selection criteria. © J. Iglesias-PĂĄramo et al. 2022.This work has been partially funded by projects PID2019-107408GB-C44 from the Spanish PNAYA, co-funded with FEDER, and grand P18-FR-2664, funded by Junta de AndalucĂ­a. We acknowledge financial support from the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award to the Instituto de AstrofĂ­sica de AndalucĂ­a (SEV-2017-0709). RGD and LADG acknowledge financial support from the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award to the Instituto de AstrofĂ­sica de AndalucĂ­a (SEV-2017-0709), and PID2019-109067-GB100. IM acknowledges financial support from the State Agency for Research of the Spanish MCIU through the PID2019-106027GB-C41. JCM acknowledges partial support from the Spanish Ministry of Science, Innovation and Universities (MCIU/AEI/FEDER, UE) through the grant PGC2018-097585-B-C22. SDP is grateful to the Fonds de Recherche du QuĂ©bec – Nature et Technologies. LSJ acknowledges the support of CNPq (304819/2017-4) and FAPESP (2019/10923-5). JAFO acknowledges the financial support from the Spanish Ministry of Science and Innovation and the European Union – NextGenerationEU through the Recovery and Resilience Facility project ICTS-MRR-2021-03- CEFCA. Funding for the J-PAS Project has been provided by the Governments of España and AragĂłn though the Fondo de InversiĂłn de Teruel, European FEDER funding and the MINECO and by the Brazilian agencies FINEP, FAPESP, FAPERJ and by the National Observatory of Brazil. Based on observations made with the JST/T250 telescope and PathFinder camera for the miniJPAS project at the Observatorio AstrofĂ­sico de Javalambre (OAJ), in Teruel, owned, managed, and operated by the Centro de Estudios de FĂ­sica del Cosmos de AragĂłn (CEFCA). We acknowledge the OAJ Data Processing and Archiving Unit (UPAD) for reducing and calibrating the OAJ data used in this work. Funding for OAJ, UPAD, and CEFCA has been provided by the Governments of Spain and AragĂłn through the Fondo de Inversiones de Teruel; the AragĂłn Government through the Research Groups E96, E103, and E16_17R; the Spanish Ministry of Science, Innovation and Universities (MCIU/AEI/FEDER, UE) with grant PGC2018-097585-B-C21; the Spanish Ministry of Economy and Competitiveness (MINECO/FEDER, UE) under AYA2015-66211-C2-1-P, AYA2015-66211-C2-2, AYA2012-30789, and ICTS-2009-14; and European FEDER funding (FCDD10-4E-867, FCDD13-4E-2685). This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Funding for SDSS-IV has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-IV web site is https://www.sdss.org/. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 898633.Peer reviewe

    Searching for intergalactic star forming regions in Stephan’s Quintet with SITELLE

    No full text
    Based on SITELLE spectroscopy data, we studied the ionised gas emission for the 175 Hα emission regions in the Stephan’s Quintet (SQ). In this paper we perform a detailed analysis of the star formation rate (SFR), oxygen abundance, and nitrogen-to-oxygen abundance ratio (N/O) of the SQ regions, with the intention of exploring the provenance and evolution of this complex structure. According to the BPT diagram, we found 91 HII, 17 composite, and 7 active galactic nucleus-like regions in SQ. Several regions are compatible with fast shocks models without a precursor for solar metallicity and low density (n  =  0.1 cm−3), with velocities in the range of 175–300 km s−1. We derived the total SFR in SQ (log(SFR/M⊙ yr−1 = 0.496)). Twenty-eight percent of the total SFR in SQ comes from starburst A, while 9% is in starburst B, and 45% comes from the regions with a radial velocity lower than 6160 km s−1. For this reason, we assume that the material prior to the collision with the new intruder does not show a high SFR, and therefore SQ was apparently quenched. When considering the integrated SFR for the whole SQ and the new intruder, we found that both zones have a SFR consistent with those obtained in the SDSS star-forming galaxies. At least two chemically different gas components cohabit in SQ where, on average, the regions with high radial velocities (v >  6160 km s−1) have lower values of oxygen abundance and N/O than those with low radial velocities (v ≀ 6160 km s−1). The values found for the line ratios considered in this study, as well as in the oxygen abundance and N/O for the southern debris region and the northernmost tidal tail, are compatible with regions belonging to the outer part of the galaxies. We highlight the presence of inner-outer variation for metallicity and some emission line ratios along the new intruder strands and the young tidal tail south strand. Finally, the SQ Hα regions are outside the galaxies because the interactions have dispersed the gas to the peripheral zones

    A MUSE/VLT spatially resolved study of the emission structure of Green Pea galaxies

    No full text
    Green Pea galaxies (GPs) present among the most intense starbursts known in the nearby Universe. These galaxies are regarded as local analogs of high-redshift galaxies, making them a benchmark in the understanding of the star formation processes and the galactic evolution in the early Universe. In this work, we performed an integral field spectroscopic (IFS) study for a set of 24 GPs to investigate the interplay between its ionized interstellar medium (ISM) and the massive star formation that these galaxies present. Observations were taken in the optical spectral range (λ4750 Å–λ9350 Å) with the MUSE spectrograph attached to the 8.2 m telescope VLT. Spatial extension criteria were employed to verify which GPs are spatially resolved in the MUSE data cubes. We created and analyzed maps of spatially distributed emission lines (at different stages of excitation), continuum emission, and properties of the ionized ISM (e.g., ionization structure indicators, physical-chemical conditions, dust extinction). We also took advantage of our IFS data to produce integrated spectra of selected galactic regions in order to study their physical-chemical conditions. Maps of relevant emission lines and emission line ratios show that higher-excitation gas is preferentially located in the center of the galaxy, where the starburst is present. The continuum maps, with an average angular extent of 4″, exhibit more complex structures than the emission line maps. However, the [O II

    Characterisation of the stellar content of SDSS EELGs through self-consistent spectral modelling

    No full text
    This is an Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Extreme emission line galaxies (EELGs) are a notable galaxy genus, ultimately being regarded as local prototypes of early galaxies at the cosmic noon. Robust characterisation of their stellar content, however, is hindered by the exceptionally high nebular emission present in their optical spectroscopic data. This study is dedicated into recovering the stellar properties of a sample of 414 EELGs as observed by the SDSS Survey. Such is achieved by means of the spectral synthesis code FADO, which self-consistently considers the stellar and nebular emission in an optical spectrum. Additionally, a comparative analysis was carried on, by further processing the EELGs sample with the purely stellar spectral synthesis code STARLIGHT, and by extending the analysis to a sample of 697 normal star-forming galaxies, expected to be less affected by nebular contribution. We find that, for both galaxy samples, stellar mass and mean age estimates by STARLIGHT are systematically biased towards higher values, and that an adequate determination of the physical and evolutionary properties of EELGs via spectral synthesis is only possible when nebular continuum emission is taken into account. Moreover, the differences between the two population synthesis codes can be ascribed to the degree of star-formation activity through the specific star-formation rate and the sum of the flux of the most prominent emission lines. As expected, on the basis of the theoretical framework, our results emphasise the importance of considering the nebular emission while performing spectral synthesis, even for galaxies hosting typical levels of star-formation activity. © I. Breda et al. 2022.I.B., J.V.M., J.I.P., C.K., E.P.M and A.A.P. acknowledge financial support from the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award to the Instituto de AstrofĂ­sica de AndalucĂ­a (SEV-2017-0709). J.V.M., J.I.P., C.K., and E.P.M. acknowledge financial support from projects Estallidos6 AYA2016-79724-C4 (Spanish Ministerio de Economia y Competitividad), Estallidos7 PID2019-107408GB-C44 (Spanish Ministerio de Ciencia e Innovacion), and grant P18-FR-2664 (Junta de AndalucĂ­a). R.A. acknowledges support from ANID Fondecyt Regular 1202007. P.P. thanks Fundação para a CiĂȘncia e a Tecnologia (FCT) for managing research funds graciously provided to Portugal by the EU and was supported through FCT grants UID/FIS/04434/2019, UIDB/04434/2020, UIDP/04434/2020 and the project “Identifying the Earliest Supermassive Black Holes with ALMA (IdEaS with ALMA)” (PTDC/FIS-AST/29245/2017). This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.Peer reviewe

    The miniJPAS survey: A preview of the Universe in 56 colors

    No full text
    Full list of authors: Bonoli, S.; MarĂ­n-Franch, A.; Varela, J.; VĂĄzquez RamiĂł, H.; Abramo, L. R.; Cenarro, A. J.; Dupke, R. A.; VĂ­lchez, J. M.; CristĂłbal-Hornillos, D.; GonzĂĄlez Delgado, R. M.; HernĂĄndez-Monteagudo, C.; LĂłpez-Sanjuan, C.; Muniesa, D. J.; Civera, T.; Ederoclite, A.; HernĂĄn-Caballero, A.; Marra, V.; Baqui, P. O.; Cortesi, A.; Cypriano, E. S.; Daflon, S.; de Amorim, A. L.; DĂ­az-GarcĂ­a, L. A.; Diego, J. M.; MartĂ­nez-Solaeche, G.; PĂ©rez, E.; Placco, V. M.; Prada, F.; Queiroz, C.; Alcaniz, J.; Alvarez-Candal, A.; Cepa, J.; Maroto, A. L.; Roig, F.; Siffert, B. B.; Taylor, K.; Benitez, N.; Moles, M.; SodrĂ©, L.; Carneiro, S.; Mendes de Oliveira, C.; Abdalla, E.; Angulo, R. E.; Aparicio Resco, M.; Balaguera-AntolĂ­nez, A.; Ballesteros, F. J.; Brito-Silva, D.; Broadhurst, T.; Carrasco, E. R.; Castro, T.; Cid Fernandes, R.; Coelho, P.; de Melo, R. B.; Doubrawa, L.; Fernandez-Soto, A.; Ferrari, F.; Finoguenov, A.; GarcĂ­a-Benito, R.; Iglesias-PĂĄramo, J.; JimĂ©nez-Teja, Y.; Kitaura, F. S.; Laur, J.; Lopes, P. A. A.; Lucatelli, G.; MartĂ­nez, V. J.; Maturi, M.; Overzier, R. A.; Pigozzo, C.; Quartin, M.; RodrĂ­guez-MartĂ­n, J. E.; Salzano, V.; Tamm, A.; Tempel, E.; Umetsu, K.; Valdivielso, L. ; von Marttens, R.; Zitrin, A.; DĂ­az-MartĂ­n, M. C.; LĂłpez-Alegre, G.; LĂłpez-Sainz, A.; Yanes-DĂ­az, A.; Rueda-Teruel, F.; Rueda-Teruel, S.; Abril Ibañez, J.; L AntĂłn Bravo, J.; Bello Ferrer, R.; Bielsa, S.; Casino, J. M.; Castillo, J.; Chueca, S.; Cuesta, L.; GarzarĂĄn Calderaro, J.; Iglesias-Marzoa, R.; Íniguez, C.; Lamadrid Gutierrez, J. L.; Lopez-Martinez, F.; Lozano-PĂ©rez, D.; MaĂ­cas SacristĂĄn, N.; Molina-Ibåñez, E. L.; Moreno-Signes, A.; RodrĂ­guez Llano, S.; Royo Navarro, M.; Tilve Rua, V.; Andrade, U.; Alfaro, E. J.; Akras, S.; Arnalte-Mur, P.; Ascaso, B.; Barbosa, C. E.; BeltrĂĄn JimĂ©nez, J.; Benetti, M.; Bengaly, C. A. P.; Bernui, A.; Blanco-Pillado, J. J.; Borges Fernandes, M.; Bregman, J. N.; Bruzual, G.; Calderone, G.; Carvano, J. M.; Casarini, L.; Chaves-Montero, J.; Chies-Santos, A. L.; Coutinho de Carvalho, G.; Dimauro, P.; Duarte Puertas, S.; Figueruelo, D.; GonzĂĄlez-Serrano, J. I.; Guerrero, M. A.; Gurung-LĂłpez, S.; Herranz, D.; Huertas-Company, M.; Irwin, J. A.; Izquierdo-Villalba, D.; Kanaan, A.; Kehrig, C.; Kirkpatrick, C. C.; Lim, J.; Lopes, A. R.; Lopes de Oliveira, R.; Marcos-Caballero, A.; MartĂ­nez-Delgado, D.; MartĂ­nez-GonzĂĄlez, E.; MartĂ­nez-Somonte, G.; Oliveira, N.; Orsi, A. A.; Penna-Lima, M.; Reis, R. R. R.; Spinoso, D.; Tsujikawa, S.; Vielva, P.; Vitorelli, A. Z.; Xia, J. Q.; Yuan, H. B.; Arroyo-Polonio, A.; Dantas, M. L. L.; Galarza, C. A.; Gonçalves, D. R.; Gonçalves, R. S.; Gonzalez, J. E.; Gonzalez, A. H.; Greisel, N.; JimĂ©nez-Esteban, F.; Landim, R. G.; Lazzaro, D.; Magris, G.; Monteiro-Oliveira, R.; Pereira, C. B.; Rebouças, M. J.; Rodriguez-Espinosa, J. M.; Santos da Costa, S.; Telles, E.The Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) will scan thousands of square degrees of the northern sky with a unique set of 56 filters using the dedicated 2:55m Javalambre Survey Telescope (JST) at the Javalambre Astrophysical Observatory. Prior to the installation of the main camera (4:2 deg2 field-of-view with 1.2 Gpixels), the JST was equipped with the JPAS-Pathfinder, a one CCD camera with a 0:3 deg2 field-of-view and plate scale of 0.23 arcsec pixel?1. To demonstrate the scientific potential of J-PAS, the JPAS-Pathfinder camera was used to perform miniJPAS, a _1 deg2 survey of the AEGIS field (along the Extended Groth Strip). The field was observed with the 56 J-PAS filters, which include 54 narrow band (FWHM _ 145 ) and two broader filters extending to the UV and the near-infrared, complemented by the u; g; r; i SDSS broad band filters. In this miniJPAS survey overview paper, we present the miniJPAS data set (images and catalogs), as we highlight key aspects and applications of these unique spectro-photometric data and describe how to access the public data products. The data parameters reach depths of magAB ' 22?23:5 in the 54 narrow band filters and up to 24 in the broader filters (5_ in a 300 aperture). The miniJPAS primary catalog contains more than 64 000 sources detected in the r band and with matched photometry in all other bands. This catalog is 99% complete at r = 23:6 (r = 22:7) mag for point-like (extended) sources. We show that our photometric redshifts have an accuracy better than 1% for all sources up to r = 22:5, and a precision of _0:3% for a subset consisting of about half of the sample. On this basis, we outline several scientific applications of our data, including the study of spatially-resolved stellar populations of nearby galaxies, the analysis of the large scale structure up to z _ 0:9, and the detection of large numbers of clusters and groups. Sub-percent redshift precision can also be reached for quasars, allowing for the study of the large-scale structure to be pushed to z 2. The miniJPAS survey demonstrates the capability of the J-PAS filter system to accurately characterize a broad variety of sources and paves the way for the upcoming arrival of J-PAS, which will multiply this data by three orders of magnitude. © 2021 EDP Sciences. All rights reserved.Funding for OAJ, UPAD, and CEFCA has been provided by the Governments of Spain and Aragon through the Fondo de Inversiones de Teruel; the Aragon Government through the Research Groups E96, E103, and E16_17R; the Spanish Ministry of Science, Innovation and Universities (MCIU/AEI/FEDER, UE) with grant PGC2018-097585-B-C21; the Spanish Ministry of Economy and Competitiveness (MINECO/FEDER, UE) under AYA2015-66211-C2-1-P, AYA2015-66211-C2-2, AYA2012-30789, and ICTS2009-14; and European FEDER funding (FCDD10-4E-867, FCDD13-4E-2685). This work has made used of CEFCA's Scientific High Performance Computing system which has been funded by the Governments of Spain and Aragon through the Fondo de Inversiones de Teruel, and the Spanish Ministry of Economy and Competitiveness (MINECO-FEDER, grant AYA2012-30789). Funding for the J-PAS project has been provided also by the Brazilian agencies FINEP, FAPESP, FAPERJ and by the National Observatory of Brazil. Additional funding was also provided by the Tartu Observatory and by the Chinese Consortium from the Academy of Sciences SB acknowledges partial support from the project PGC2018-097585-B-C22. R.A.D. acknowledges support from the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico -CNPq through BP grant 308105/2018-4, and the Financiadora de Estudos e Projetos -FINEP grants REF. 1217/13 -01.13.0279.00 and REF 0859/10 -01.10.0663.00 and also FAPERJ PRONEX grant E-26/110.566/2010 for hardware funding support for the J-PAS project through the National Observatory of Brazil and Centro Brasileiro de Pesquisas Fisicas. LRA acknowledges financial support from CNPq (306696/2018-5) and FAPESP (2015/17199-0). VMthanks CNPq (Brazil) and FAPES (Brazil) for partial financial support and the H2020 project No 888258. L.A.D.G. and K.U. acknowledge support from the Ministry of Science and Technology of Taiwan (grant MOST 106-2628-M-001-003-MY3) and from the Academia Sinica (grant AS-IA-107-M01). J.M.D. and D.H acknowledge the support of project PGC2018-101814-B-100. MQ thanks CNPq (Brazil) and FAPERJ (Brazil) for financial support. PC acknowledges financial support from FAPESP (2018/05392-8) and CNPq (310041/2018-0). AAC acknowledges support from FAPERJ (E26/203.186/2016), CNPq (304971/2016-2 and 401669/2016-5), and the Universidad de Alicante (contract UATALENTO1802). C.Q. acknowledges support from FAPESP (2015/11442-0 and 2019/067661). V.M.P. is supported by NOIRLab, which is managed by AURA under a cooperative agreement with the NSF. P.B acknowledges support from CAPES -Finance Code 001. IAA researchers acknowledge financial support from the State Agency for Research of the Spanish MCIU through the "Center of Excellence Severo Ochoa" award to the Instituto de Astrofisica de Andalucia (SEV-2017-0709). Authors acknowledge support from the Generalitat Valenciana project of excellence Prometeo/2020/085. RGD, GMS, JRM, RGB, EP acknowledge financial support from the project AyA2016-77846-P. TC is supported by the INFN INDARK PD51 and PRIN-MIUR 2015W7KAWC. MAR and ALM acknowledge support from the MINECO project FIS2016-78859P(AEI/FEDER, UE). ET, AT and JL acknowledge the support by ETAg grants IUT40-2 and by EU through the ERDF CoE grant TK133 and MOBTP86. CK, JMV, JIP acknowledge financial support from project AYA2016-79724C4-4P. PAAL thanks the support of CNPq (309398/2018-5). LC thanks CNPq for partial support. Y.J-T acknowledges financial support from the FAPERJ (E26/202.835/2016), and from the Horizon 2020 Marie Sklodowska-Curie grant agreement No 898633. DMD acknowledges financial support from the SFB 881 of the DFG and from the MINECO grant AYA2016-81065-C2-2. FP acknowledges support of the project PGC2018-101931-B-I00. JC acknowledges support of the project E AYA2017-88007-C3-1-P, and co-financed by the FEDER. JIGs acknowledges support of projects of reference AYA2017-88007-C3-3-P, and PGC2018-099705-B-I00 and co-financed by the FEDER. EMG and PV would like to acknowledge financial support from the project ESP2017-83921C2-1-R. GMS acknowleges financial support from a predoctoral contract, ref. PRE2018-085523 (MCIU/AEI/FSE, UE). S.C. is partially supported by CNPq. R.G.L. acknowledges CAPES (process 88881.162206/2017-01) and Alexander von Humboldt Foundation for the financial support. JSA acknowledges support from FAPERJ (E26/203.024/2017), CNP (310790/2014-0 and 400471/2014-0) and FINEP (1217/13 -01.13.0279.00 and Ref. 0859/10 -01.10.0663.00). RvM acknowledges support from CNPq. AFS, PAM, VJM and FJB acknowledge support from project AYA2016-81065-C2-2. PAM acknowledges support from the "Subprograma Atraccio de Talent -Contractes Postdoctorals de la Universitat de Valencia". ESC acknowledges support from CNPq (308539/20184) and FAPESP (2019/19687-2). CMdO acknowledges support from CNPq (grant 312333/2014-5) and FAPESP (grant 2009/54202-8). LSJ acknowledges support from CNPq (grant 304819/2017-4) and FAPESP (grant 2012/008004). JMC acknowledges support from CNPq (grant 310727/2016-2). C.H.-M. and N. Greisel also acknowledge the support of the European Union via the Career Integration Grant CIG-PCIG9-GA-2011-294183. JJBP and AMC would like to acknowledge the support from the grant PGC2018-094626-B-C21 and the Basque Government grant IT-979-16. AMC acknowledges the postdoctoral contract from the University of the Basque Country UPV/EHU "Especializacioon de personal investigador doctor" program. MLLD acknowledges CAPES -Finance Code 001; and CNPq (142294/2018-7). GB acknowledges financial support from the UNAM through grant DGAPA/PAPIIT IG100319, from CONACyT through grant CB2015-252364, and from FAPESP projects 2017/02375-2 and 2018/05392-8. M.J. Reboucas acknowledges the support of FAPERJ under a CNE E-26/202.864/2017 grant, and CNPq. Support by CNPq (305409/2016-6) and FAPERJ (E-26/202.841/2017) is acknowledged by DL. AB acknowledges a CNPq fellowship. C.A.G.acknowledges support from CAPES. EA acknowledges support from FAPESP (2011/18729-1). AC acknowledges support from PNPD/CAPES. ABA and FSK acknowledge the Severo Ochoa program SEV-2015-0548. FSK also thanks the AYA2017-89891-P and the RYC2015-18693 grants. DF acknowledges support from the Atraccion del Talento Cientifico en Salamanca programme and the project PGC2018-096038B-I00.Peer reviewe

    The miniJPAS survey: A preview of the Universe in 56 colors

    No full text
    The Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) will scan thousands of square degrees of the northern sky with a unique set of 56 filters using the dedicated 2.55 m Javalambre Survey Telescope (JST) at the Javalambre Astrophysical Observatory. Prior to the installation of the main camera (4.2 deg2 field-of-view with 1.2 Gpixels), the JST was equipped with the JPAS-Pathfinder, a one CCD camera with a 0.3 deg2 field-of-view and plate scale of 0.23 arcsec pixel−1. To demonstrate the scientific potential of J-PAS, the JPAS-Pathfinder camera was used to perform miniJPAS, a ∌1 deg2 survey of the AEGIS field (along the Extended Groth Strip). The field was observed with the 56 J-PAS filters, which include 54 narrow band (FWHM ∌ 145 Å) and two broader filters extending to the UV and the near-infrared, complemented by the u, g, r, i SDSS broad band filters. In this miniJPAS survey overview paper, we present the miniJPAS data set (images and catalogs), as we highlight key aspects and applications of these unique spectro-photometric data and describe how to access the public data products. The data parameters reach depths of magAB ≃ 22−23.5 in the 54 narrow band filters and up to 24 in the broader filters (5σ in a 3″ aperture). The miniJPAS primary catalog contains more than 64 000 sources detected in the r band and with matched photometry in all other bands. This catalog is 99% complete at r = 23.6 (r = 22.7) mag for point-like (extended) sources. We show that our photometric redshifts have an accuracy better than 1% for all sources up to r = 22.5, and a precision of ≀0.3% for a subset consisting of about half of the sample. On this basis, we outline several scientific applications of our data, including the study of spatially-resolved stellar populations of nearby galaxies, the analysis of the large scale structure up to z ∌ 0.9, and the detection of large numbers of clusters and groups. Sub-percent redshift precision can also be reached for quasars, allowing for the study of the large-scale structure to be pushed to z > 2. The miniJPAS survey demonstrates the capability of the J-PAS filter system to accurately characterize a broad variety of sources and paves the way for the upcoming arrival of J-PAS, which will multiply this data by three orders of magnitude

    The miniJPAS survey: a preview of the Universe in 56 colours

    No full text
    International audienceThe Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) will soon start to scan thousands of square degrees of the northern extragalactic sky with a unique set of 5656 optical filters from a dedicated 2.552.55m telescope, JST, at the Javalambre Astrophysical Observatory. Before the arrival of the final instrument (a 1.2 Gpixels, 4.2deg2^2 field-of-view camera), the JST was equipped with an interim camera (JPAS-Pathfinder), composed of one CCD with a 0.3deg2^2 field-of-view and resolution of 0.23 arcsec pixel−1^{-1}. To demonstrate the scientific potential of J-PAS, with the JPAS-Pathfinder camera we carried out a survey on the AEGIS field (along the Extended Groth Strip), dubbed miniJPAS. We observed a total of ∌1\sim 1 deg2^2, with the 5656 J-PAS filters, which include 5454 narrow band (NB, FWHM∌145\rm{FWHM} \sim 145Angstrom) and two broader filters extending to the UV and the near-infrared, complemented by the u,g,r,iu,g,r,i SDSS broad band (BB) filters. In this paper we present the miniJPAS data set, the details of the catalogues and data access, and illustrate the scientific potential of our multi-band data. The data surpass the target depths originally planned for J-PAS, reaching magAB\rm{mag}_{\rm {AB}} between ∌22\sim 22 and 23.523.5 for the NB filters and up to 2424 for the BB filters (5σ5\sigma in a 33~arcsec aperture). The miniJPAS primary catalogue contains more than 64,00064,000 sources extracted in the rr detection band with forced photometry in all other bands. We estimate the catalogue to be complete up to r=23.6r=23.6 for point-like sources and up to r=22.7r=22.7 for extended sources. Photometric redshifts reach subpercent precision for all sources up to r=22.5r=22.5, and a precision of ∌0.3\sim 0.3% for about half of the sample. (Abridged
    corecore