154 research outputs found
Magnetic Reversal on Vicinal Surfaces
We present a theoretical study of in-plane magnetization reversal for vicinal
ultrathin films using a one-dimensional micromagnetic model with
nearest-neighbor exchange, four-fold anisotropy at all sites, and two-fold
anisotropy at step edges. A detailed "phase diagram" is presented that catalogs
the possible shapes of hysteresis loops and reversal mechanisms as a function
of step anisotropy strength and vicinal terrace length. The steps generically
nucleate magnetization reversal and pin the motion of domain walls. No sharp
transition separates the cases of reversal by coherent rotation and reversal by
depinning of a ninety degree domain wall from the steps. Comparison to
experiment is made when appropriate.Comment: 12 pages, 8 figure
Controlled switching of N\'eel caps in flux-closure magnetic dots
While magnetic hysteresis usually considers magnetic domains, the switching
of the core of magnetic vortices has recently become an active topic. We
considered Bloch domain walls, which are known to display at the surface of
thin films flux-closure features called N\'eel caps. We demonstrated the
controlled switching of these caps under a magnetic field, occurring via the
propagation of a surface vortex. For this we considered flux-closure states in
elongated micron-sized dots, so that only the central domain wall can be
addressed, while domains remain unaffected.Comment: 4 pages, 3 figure
M.I.T./Canadian Vestibular Experiments on the Spacelab-1 Mission. Part 1: Sensory Adaptation to Weightlessness and Readaptation to One-G: An Overview
Experiments on human spatial orientation were conducted on four crewmembers of Space Shuttle Spacelab Mission 1. The conceptual background of the project, the relationship among the experiments, and their relevance to a 'sensory reinterpretation hypothesis' are presented. Detailed experiment procedures and results are presented in the accompanying papers in this series. The overall findings are discussed as they pertain to the following aspects of hypothesized sensory reinterpretation in weightlessness: (1) utricular otolith afferent signals are reinterpreted as indicating head translation rather than tilt, (2) sensitivity of reflex responses to footward acceleration is reduced, and (3) increased weighting is given to visual and tactile cues in orientation perception and posture control. Results suggest increased weighting of visual cues and reduced weighting of graviceptor signals in weightlessness
Three-dimensional magnetic flux-closure patterns in mesoscopic Fe islands
We have investigated three-dimensional magnetization structures in numerous
mesoscopic Fe/Mo(110) islands by means of x-ray magnetic circular dichroism
combined with photoemission electron microscopy (XMCD-PEEM). The particles are
epitaxial islands with an elongated hexagonal shape with length of up to 2.5
micrometer and thickness of up to 250 nm. The XMCD-PEEM studies reveal
asymmetric magnetization distributions at the surface of these particles.
Micromagnetic simulations are in excellent agreement with the observed magnetic
structures and provide information on the internal structure of the
magnetization which is not accessible in the experiment. It is shown that the
magnetization is influenced mostly by the particle size and thickness rather
than by the details of its shape. Hence, these hexagonal samples can be
regarded as model systems for the study of the magnetization in thick,
mesoscopic ferromagnets.Comment: 12 pages, 11 figure
Magnetic Susceptibility of Multiorbital Systems
Effects of orbital degeneracy on magnetic susceptibility in paramagnetic
phases are investigated within a mean-field theory. Under certain crystalline
electric fields, the magnetic moment consists of two independent moments, e.g.,
spin and orbital moments. In such a case, the magnetic susceptibility is given
by the sum of two different Curie-Weiss relations, leading to deviation from
the Curie-Weiss law. Such behavior may be observed in d- and f-electron systems
with t_{2g} and Gamma_8 ground states, respectively. As a potential application
of our theory, we attempt to explain the difference in the temperature
dependence of magnetic susceptibilities of UO_2 and NpO_2.Comment: 4 pages, 3 figure
Novel critical exponent of magnetization curves near the ferromagnetic quantum phase transitions of Sr1-xAxRuO3 (A = Ca, La0.5Na0.5, and La)
We report a novel critical exponent delta=3/2 of magnetization curves
M=H^{1/delta} near the ferromagnetic quantum phase transitions of Sr1-xAxRuO3
(A = Ca, La0.5Na0.5, and La), which the mean field theory of the
Ginzburg-Landau-Wilson type fails to reproduce. The effect of dirty
ferromagnetic spin fluctuations might be a key.Comment: 4 pages, 5 figure
Strain-controlled criticality governs the nonlinear mechanics of fibre networks
Disordered fibrous networks are ubiquitous in nature as major structural
components of living cells and tissues. The mechanical stability of networks
generally depends on the degree of connectivity: only when the average number
of connections between nodes exceeds the isostatic threshold are networks
stable (Maxwell, J. C., Philosophical Magazine 27, 294 (1864)). Upon increasing
the connectivity through this point, such networks undergo a mechanical phase
transition from a floppy to a rigid phase. However, even sub-isostatic networks
become rigid when subjected to sufficiently large deformations. To study this
strain-controlled transition, we perform a combination of computational
modeling of fibre networks and experiments on networks of type I collagen
fibers, which are crucial for the integrity of biological tissues. We show
theoretically that the development of rigidity is characterized by a
strain-controlled continuous phase transition with signatures of criticality.
Our experiments demonstrate mechanical properties consistent with our model,
including the predicted critical exponents. We show that the nonlinear
mechanics of collagen networks can be quantitatively captured by the
predictions of scaling theory for the strain-controlled critical behavior over
a wide range of network concentrations and strains up to failure of the
material
Multipole Ordering and Fluctuations in f-Electron Systems
We investigate effects of multipole moments in f-electron systems both from
phenomenological and microscopic viewpoints. First, we discuss significant
effects of octupole moment on the magnetic susceptibility in a paramagnetic
phase. It is found that even within mean-field approximation, the magnetic
susceptibility deviates from the Curie-Weiss law due to interactions between
dipole and octupole moments. Next, we proceed to a microscopic theory for
multipole ordering on the basis of a j-j coupling scheme. After brief
explanation of a method to derive multipole interactions from the -electron
model, we discuss several multipole ordered phases depending on lattice
structure. Finally, we show our new development of the microscopic approach to
the evaluation of multipole response functions. We apply fluctuation exchange
approximation to the f-electron model, and evaluate multipole response
functions.Comment: 7 pages, 4 figures, Proceedings of ASR-WYP-200
Ferromagnetism and giant magnetoresistance in the rare earth fullerides Eu6-xSrxC60
We have studied crystal structure, magnetism and electric transport
properties of a europium fulleride Eu6C60 and its Sr-substituted compounds,
Eu6-xSrxC60. They have a bcc structure, which is an isostructure of other M6C60
(M represents an alkali atom or an alkaline earth atom). Magnetic measurements
revealed that magnetic moment is ascribed to the divalent europium atom with S
= 7/2 spin, and a ferromagnetic transition was observed at TC = 10 - 14 K. In
Eu6C60, we also confirm the ferromagnetic transition by heat capacity
measurement. The striking feature in Eu6-xSrxC60} is very large negative
magnetoresistance at low temperature; the resistivity ratio \rho(H = 9
T)/\rho(H = 0 T) reaches almost 10^{-3} at 1 K in Eu6C60. Such large
magnetoresistance is the manifestation of a strong pi-f interaction between
conduction carriers on C60 and 4f electrons of Eu.Comment: 5 pages, 4 figure
Anisotropic Colossal Magnetoresistance Effects in Fe_{1-x}Cu_xCr_2S_4
A detailed study of the electronic transport and magnetic properties of
FeCuCrS () on single crystals is presented. The
resistivity is investigated for K in magnetic fields up to
14 Tesla and under hydrostatic pressure up to 16 kbar. In addition
magnetization and ferromagnetic resonance (FMR) measurements were performed.
FMR and magnetization data reveal a pronounced magnetic anisotropy, which
develops below the Curie temperature, , and increases strongly
towards lower temperatures. Increasing the Cu concentration reduces this
effect. At temperatures below 35 K the magnetoresistance, , exhibits a strong dependence on the direction of the
magnetic field, probably due to an enhanced anisotropy. Applying the field
along the hard axis leads to a change of sign and a strong increase of the
absolute value of the magnetoresistance. On the other hand the
magnetoresistance remains positive down to lower temperatures, exhibiting a
smeared out maximum with the magnetic field applied along the easy axis. The
results are discussed in the ionic picture using a triple-exchange model for
electron hopping as well as a half-metal utilizing a band picture.Comment: some typos correcte
- …