12 research outputs found

    Rooftop and indoor reception with transmit diversity applied to DVB-T networks: A long term measurement campaign

    Get PDF
    Although transmit Delay Diversity (DD) can provide a gain in indoor and other Non Line of Sight situations (NLOS), it can introduce degradation in rooftop reception. In fact, when the Ricean K factor of the channel is significantly high (e.g. Line of Sight reception), the channel performs similar to an AWGN channel where the performance degrades due to DD that artificially increase the fading. This paper investigates through practical evaluation the impacts of Transmit DD on LOS and NLOS stationary reception. Then, it studies 2 techniques to reduce the degradation performance in LOS while aiming to keep the same diversity gain in NLOS receptio

    Characterization of non-intentional emissions from distributed energy resources up to 500 kHz: A case study in Spain

    Get PDF
    Narrow Band Power Line Communications (NB-PLC) systems are currently used for smart metering and power quality monitoring as a part of the Smart Grid (SG) concept. However, non-intentional emissions generated by the devices connected to the grid may sometimes disturb the communications and isolate metering equipment. Though some research works have been recently developed to characterize these emissions, most of them have been limited to frequencies below 150 kHz and they are mainly focused on in-house electronic appliances and lightning devices. As NB-PLC can also be allocated in higher frequencies up to 500 kHz, there is still a lack of analysis in this frequency range, especially for emissions from Distributed Energy Resources (DERs). The identification and characterization of the emissions is essential to develop solutions that avoid a negative impact on the proper performance of NB-PLC. In this work, the non-intentional emissions of different types of DERs composing a representative microgrid have been measured in the 35–500 kHz frequency range and analyzed both in time and frequency domains. Different working conditions and coupling and commutation procedures to mains are considered in the analysis. Results are then compared to the limits recommended by regulatory bodies for spurious emissions from communication systems in this frequency band, as no specific limits for DERs have been established. Field measurements show clear differences in the characteristics of non-intentional emissions for different devices, working conditions and coupling procedures and for frequencies below and above 150 kHz. Results of this study demonstrate that a further characterization of the potential emissions from the different types of DERs connected to the grid is required in order to guarantee current and future applications based on NB-PLC.This work has been financially supported in part by the Basque Government (Elkartek program)

    Recurrent presence of the PLCG1 S345F mutation in nodal peripheral T-cell lymphomas

    Get PDF
    This work was supported by grants from Asociación Española contra el Cancer (AECC), Ministerio de Economía y Competitividad (MINECO) (SAF2013-47416-R), Instituto Salud Carlos III (ISCIII) – Fondos FEDER, MINECO-AES(RD012/0036/0060, PI10/00621, CP11/00018). RM is supported by the Fundación Conchita Rábago de la Fundación Jiménez Díaz, Madrid (Spain). JG-R is supported by a predoctoral grant from the Fundacion Investigacion Biomedica Puerta de Hierro. Salary support to SG is provided by ISCIII-FEDER (CP11/00018). MS-B is supported by a Miguel Servet contract from ISCIII-FEDER (CP11/00018). The Instituto de Investigación Marqués de Valdecilla (IDIVAL) is partly funded by the Sociedad para el Desarrollo Regional de Cantabria (SODERCAN)

    Experimental set-up to study power quality in single-phase split-phase distribution systems

    No full text
    Publisher Copyright: © 2023, European Association for the Development of Renewable Energy, Environment and Power Quality (EA4EPQ). All rights reserved.Power Quality (PQ) has been an important topic since the creation of distribution systems. The deployment of the Advanced Metering Infrastructure (AMI) provided an important tool to measure the PQ of the electric power in the consumption points. One of the smallest secondary distribution systems in terms of power consumption is the single-phase split-phase system (120 V/240 V) that countries such as the United States, Canada, and some countries of central and south America have. Due to its size, this secondary distribution system is more prone to PQ issues. To that end, an experimental set-up was built by the authors so the distribution system from the Low Voltage (LV) transformer to the final appliances of the different houses was emulated. The aim is to capture the currents and voltages observed by the smart meter located at the entrance of the house and look for the different responses. A combination of real and dummy loads was installed in the set-up, so real noise could also be simulated. The set-up was totally automated by an industrial controller and relays, and it produced a very detailed dataset that could be used for multiple purposes.The authors gratefully acknowledge the contributions of the Hubbell Research group and the BIKAINTEK funding programme of the Basque Government for the funding of these experiments and also Joseba Jimeno and the technician Roberto Gonzalez for their work done during the construction of this set-up. Authors also wish to thank the collaboration of Izar Lopez-Ramirez during the conduction of the experiments.Peer reviewe

    Floating Neutral Detection Using Actual Generation of Form 2S Meters

    No full text
    Publisher Copyright: © 2020 IEEE.In the low-voltage distribution system of the USA, Canada and some countries of Central and South America, the most used configuration is the single-phase three-wire system (120 V/240 V) also known as the split-phase distribution system. When the neutral wire of the distribution system gets damaged or broken the current returns through the ground and a Floating Neutral condition arises. Service to the house continues without interruptions because no high over-currents come up. If the return path impedance is high enough, the equally balanced voltage system gets shifted, going out of boundaries and causing malfunctions in the appliances or even fire. A new classification-based detector is proposed to detect this condition, which only needs current measurements that the actual generation of form 2S meter gathers. Moreover, due to the simplicity of the algorithm, it can be embedded in the current generation of meters, which represents great potential of the detector. To that end, the low-voltage distribution system is modelled using a real database and some assumptions are made. The proposed novel detector approach shows zero false alarms in the houses tested and a detection time that allows the fault to be detected before significant damage occurs to the house.Peer reviewe

    MIMO performance of the next generation DVB-T

    No full text
    This paper analyses the performance of a DTT (Digital Terrestrial Television) broadcasting system that includes MIMO-OFDM techniques. The benefits of these techniques are studied comparing the results for different MIMO 2Ă—2 (Multiple Input Multiple Output), MISO 2Ă—1 (Multiple Input Single Output) and SISO (Single Input Single Output) system configurations. Different propagation channel models and configurations are considered for each diversity scheme. This study has been carried out in the context of development of the next generation DVB-T, called DVB-T2.Peer reviewe

    A review on measurement techniques for non-intentional emissions above 2 kHz

    No full text
    Publisher Copyright: © 2016 IEEE.This paper will provide a review on measurement techniques and other considerations for non-intentional conducted emission measurements above 2 kHz, as a first step to contribute to the standardization of emission requirements in this frequency band.Peer reviewe

    Measurement campaign on transmit delay diversity for mobile DVB-T/H systems

    No full text
    This paper describes the work carried out by Brunel University and Broadreach Systems (UK) to quantify the advantages that can be achieved if Transmit Delay Diversity is applied to systems employing the DVB standard. The techniques investigated can be applied to standard receiver equipment without modification. An extensive and carefully planned field trial was performed during the winter of 2007/2008 in Uxbridge (UK) to validate predictions from theoretical modeling and laboratory simulations. The transmissions were performed in the 730MHz frequency band with a DVB-T/H transmitter and a mean power of 18.4 dBW. The impact of the transmit antenna separation and the MPE-FEC was also investigated. It is shown that transmit delay diversity significantly improves the quality of reception in fast fading mobile broadcasting applications
    corecore