32 research outputs found

    a sonographic quantitative cutoff value of cerebral venous outflow in neurologic diseases a blinded study of 115 subjects

    Get PDF
    BACKGROUND AND PURPOSE: The autonomic nervous system maintains constant cerebral venous blood outflow in changing positions. Alterations in cerebral autoregulation can be revealed by postural changes at quantitative color Doppler sonography. The aim of this study was to reach an optimal cutoff value of the difference between the cerebral venous blood outflow in the supine and seated positions that can discriminate healthy controls from patients with multiple sclerosis and those with other neurologic diseases and to evaluate its specificity, sensitivity, and diagnostic accuracy. MATERIALS AND METHODS: One hundred fifteen subjects (54 with MS, 31 healthy controls, 30 with other neurologic diseases) underwent a blinded quantitative color Doppler sonography evaluation of cerebral venous blood outflow in the supine and sitting positions. An optimal difference value between the supine and sitting positions of the cerebral venous blood outflow cutoff value was sought. RESULTS: The difference value between supine and sitting positions of the cerebral venous blood outflow was ≤ 503.24 in 38/54 (70.37%) patients with MS, 9/31 (29.03%) healthy controls, and 13/30 (43.33%) subjects with other neurological diseases. A difference value between supine and sitting positions of the cerebral venous blood outflow at a 503.24 cutoff reached a sensitivity at 70.37%, a 70.96% specificity, a 80.85% positive predictive value, and a 57.89% negative predictive value; the quantitative color Doppler sonography parameters yielded significant differences. The difference value between supine and sitting positions of cerebral venous blood outflow ≤ 503.24 assessed the significant difference between MS versus other neurological diseases. CONCLUSIONS: Alteration of cerebral venous blood outflow discriminated MS versus other neurologic diseases and MS versus healthy controls. The difference value between supine and sitting positions of cerebral venous blood outflow ≤ 503.24 was statistically associated with MS

    Asymptomatic internal carotid artery stenosis and cerebrovascular risk stratification

    Get PDF
    Background The purpose of this study was to determine the cerebrovascular risk stratification potential of baseline degree of stenosis, clinical features, and ultrasonic plaque characteristics in patients with asymptomatic internal carotid artery (ICA) stenosis. Methods This was a prospective, multicenter, cohort study of patients undergoing medical intervention for vascular disease. Hazard ratios for ICA stenosis, clinical features, and plaque texture features associated with ipsilateral cerebrovascular or retinal ischemic (CORI) events were calculated using proportional hazards models. Results A total of 1121 patients with 50% to 99% asymptomatic ICA stenosis in relation to the bulb (European Carotid Surgery Trial [ECST] method) were followed-up for 6 to 96 months (mean, 48). A total of 130 ipsilateral CORI events occurred. Severity of stenosis, age, systolic blood pressure, increased serum creatinine, smoking history of more than 10 pack-years, history of contralateral transient ischemic attacks (TIAs) or stroke, low grayscale median (GSM), increased plaque area, plaque types 1, 2, and 3, and the presence of discrete white areas (DWAs) without acoustic shadowing were associated with increased risk. Receiver operating characteristic (ROC) curves were constructed for predicted risk versus observed CORI events as a measure of model validity. The areas under the ROC curves for a model of stenosis alone, a model of stenosis combined with clinical features and a model of stenosis combined with clinical, and plaque features were 0.59 (95% confidence interval [CI] 0.54-0.64), 0.66 (0.62-0.72), and 0.82 (0.78-0.86), respectively. In the last model, stenosis, history of contralateral TIAs or stroke, GSM, plaque area, and DWAs were independent predictors of ipsilateral CORI events. Combinations of these could stratify patients into different levels of risk for ipsilateral CORI and stroke, with predicted risk close to observed risk. Of the 923 patients with <70% stenosis, the predicted cumulative 5-year stroke rate was <5% in 495, 5% to 9.9% in 202, 10% to 19.9% in 142, and <20% in 84 patients. Conclusion Cerebrovascular risk stratification is possible using a combination of clinical and ultrasonic plaque features. These findings need to be validated in additional prospective studies of patients receiving optimal medical intervention alone. Copyright © 2010 by the Society for Vascular Surgery

    The size of juxtaluminal hypoechoic area in ultrasound images of asymptomatic carotid plaques predicts the occurrence of stroke

    Get PDF
    Objective: To test the hypothesis that the size of a juxtaluminal black (hypoechoic) area (JBA) in ultrasound images of asymptomatic carotid artery plaques predicts future ipsilateral ischemic stroke. Methods: A JBA was defined as an area of pixels with a grayscale value &lt;25 adjacent to the lumen without a visible echogenic cap after image normalization. The size of a JBA was measured in the carotid plaque images of 1121 patients with asymptomatic carotid stenosis 50% to 99% in relation to the bulb (Asymptomatic Carotid Stenosis and Risk of Stroke study); the patients were followed for up to 8 years. Results: The JBA had a linear association with future stroke rate. The area under the receiver-operating characteristic curve was 0.816. Using Kaplan-Meier curves, the mean annual stroke rate was 0.4% in 706 patients with a JBA &lt;4 mm 2, 1.4% in 171 patients with a JBA 4 to 8 mm2, 3.2% in 46 patients with a JBA 8 to 10 mm2, and 5% in 198 patients with a JBA &gt;10 mm2 (P &lt;.001). In a Cox model with ipsilateral ischemic events (amaurosis fugax, transient ischemic attack [TIA], or stroke) as the dependent variable, the JBA (&lt;4 mm2, 4-8 mm2, &gt;8 mm2) was still significant after adjusting for other plaque features known to be associated with increased risk, including stenosis, grayscale median, presence of discrete white areas without acoustic shadowing indicating neovascularization, plaque area, and history of contralateral TIA or stroke. Plaque area and grayscale median were not significant. Using the significant variables (stenosis, discrete white areas without acoustic shadowing, JBA, and history of contralateral TIA or stroke), this model predicted the annual risk of stroke for each patient (range, 0.1%-10.0%). The average annual stroke risk was &lt;1% in 734 patients, 1% to 1.9% in 94 patients, 2% to 3.9% in 134 patients, 4% to 5.9% in 125 patients, and 6% to 10% in 34 patients. Conclusions: The size of a JBA is linearly related to the risk of stroke and can be used in risk stratification models. These findings need to be confirmed in future prospective studies or in the medical arm of randomized controlled studies in the presence of optimal medical therapy. In the meantime, the JBA may be used to select asymptomatic patients at high stroke risk for carotid endarterectomy and spare patients at low risk from an unnecessary operation

    Cefazolin bolus and continuous administration for elective cardiac surgery: Improved pharmacokinetic and pharmacodynamic parameters

    No full text
    Objective: Cefazolin (1-2 g bolus at induction possibly repeated after cardiopulmonary bypass) remains the standard for antibiotic prophylaxis in cardiac surgery. Data indicate, however, that it is underdosed with this dosing schedule. A prospective, randomized study comparing intermittent versus loading dose plus continuous infusion for the same total dose of cefazolin was performed to assess which modality is pharmacokinetically and pharmacodynamically advantageous. Methods: Patients received 2 g cefazolin as a starting dose and then were divided into an intermittent group (receiving another 1 g at 3, 9, and 15 hours after the first dose) and a continuous group (continuous infusion started after the first dose, providing 1 g every 6 hours for 18 hours). Cefazolin levels were measured in blood and atria. Results: Mean total and calculated free trough concentrations in blood varied greatly among patients in the intermittent group and were lower than those in the continuous group (P 90%) was achieved, whereas the goal was met for only 3 of 10 (30%) in the intermittent group (P < .05). The mean atrial tissue concentration was also higher with continuous infusion (P < .05). Conclusions: Administration of cefazolin as bolus plus continuous infusion has pharmacokinetic and pharmacodynamic advantages relative to intermittent administration. It provides more stable serum levels, lower interpatient variability, and higher myocardial tissue penetration. Copyright © 2010 by The American Association for Thoracic Surgery
    corecore