98 research outputs found

    Clustering of Lyman-alpha Emitters Around Quasars at z∼4z\sim4

    Full text link
    The strong observed clustering of z>3.5z>3.5 quasars indicates they are hosted by massive (Mhalo≳1012 h−1 M⊙M_{\rm{halo}}\gtrsim10^{12}\,h^{-1}\,\rm{M_{\odot}}) dark matter halos. Assuming quasars and galaxies trace the same large-scale structures, this should also manifest as strong clustering of galaxies around quasars. Previous work on high-redshift quasar environments, mostly focused at z>5z>5, have failed to find convincing evidence for these overdensities. Here we conduct a survey for Lyman alpha emitters (LAEs) in the environs of 17 quasars at z∼4z\sim4 probing scales of R≲7 h−1 MpcR\lesssim7\,h^{-1}\,{\rm{Mpc}}. We measure an average LAE overdensity around quasars of 1.4 for our full sample, which we quantify by fitting the quasar-LAE cross-correlation function. We find consistency with a power-law shape with correlation length of r0QG=2.78−1.05+1.16 h−1 cMpcr^{QG}_{0}=2.78^{+1.16}_{-1.05}\,h^{-1}\,{\rm{cMpc}} for a fixed slope of γ=1.8\gamma=1.8. We also measure the LAE auto-correlation length and find r0GG=9.12−1.31+1.32 h−1r^{GG}_{0}=9.12^{+1.32}_{-1.31}\,h^{-1}\,cMpc (γ=1.8\gamma=1.8), which is 3.33.3 times higher than the value measured in blank fields. Taken together our results clearly indicate that LAEs are significantly clustered around z∼4z\sim4 quasars. We compare the observed clustering with the expectation from a deterministic bias model, whereby LAEs and quasars probe the same underlying dark matter overdensities, and find that our measurements fall short of the predicted overdensities by a factor of 2.1. We discuss possible explanations for this discrepancy including large-scale quenching or the presence of excess dust in galaxies near quasars. Finally, the large cosmic variance from field-to-field observed in our sample (10/17 fields are actually underdense) cautions one from over-interpreting studies of z∼6z\sim6 quasar environments based on a single or handful of quasar fields.Comment: 19 pages, 12 figures, submitted to the Ap

    Discovery of a faint, star-forming, multiply lensed, Lyman-alpha blob

    Get PDF
    We report the discovery of a multiply lensed Lyman-α\alpha blob (LAB) behind the galaxy cluster AS1063 using the Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope (VLT). The background source is at z=z= 3.117 and is intrinsically faint compared to almost all previously reported LABs. We used our highly precise strong lensing model to reconstruct the source properties, and we find an intrinsic luminosity of LLyαL_{\rm Ly\alpha}=1.9×10421.9\times10^{42} erg s−1^{-1}, extending to 33 kpc. We find that the LAB is associated with a group of galaxies, and possibly a protocluster, in agreement with previous studies that find LABs in overdensities. In addition to Lyman-α\alpha (Lyα\alpha) emission, we find \ion{C}{IV}, \ion{He}{II}, and \ion{O}{III}] ultraviolet (UV) emission lines arising from the centre of the nebula. We used the compactness of these lines in combination with the line ratios to conclude that the \Lya nebula is likely powered by embedded star formation. Resonant scattering of the \Lya photons then produces the extended shape of the emission. Thanks to the combined power of MUSE and strong gravitational lensing, we are now able to probe the circumgalatic medium of sub-L∗L_{*} galaxies at z≈3z\approx 3.Comment: 7 pages, 7 figures; moderate changes to match the accepted A&A versoi
    • …
    corecore