1,487 research outputs found

    Fourier transform based procedure for investigations on the grid frequency signal

    Get PDF
    The continuous growth of PV and wind sources makes the inertia of power systems decrease and creates larger frequency deviations. Frequency oscillation is a stochastic signal and, consequently, it could be complex to compare the effectiveness of different control approaches devoted to manage this problem. In this paper a Fourier transform procedure is proposed in order to define a standard frequency oscillation and to set up the dynamic model of the electric grid. The final goal is to numerically simulate a realistic transient behavior; using this grid, such a model results to be the ideal starting point for evaluating the effectiveness of different possible approaches to manage the energy balance problem

    Preclinical and clinical evidence of nephro- and cardiovascular protective effects of glycosaminoglycans

    Get PDF
    Despite advances in pharmacological treatment, diabetic nephropathy is still the leading cause of end-stage renal disease and an important cause of morbidity and mortality in diabetics. Glycosaminoglycans are long, unbranched mucopolysaccharides that play an important role in establishing a charge-selective barrier that restricts the passage of negatively charged molecules, such as albumin and other proteins, at the level of the glomerular basal membrane. Their loss is associated with loss of selectivity and proteinuria. Extensive preclinical evidence and some clinical trials suggest that glycosaminoglycans replacement is associated with improvement of glomerular selectivity and of proteinuria. Sulodexide could also have some other effects, potentially useful to reduce the renal damage and the cardiovascular disease associated with proteinuria, such as improvement of haemorheological and blood lipid parameters, an endothelium protective effect and anti-inflammatory action. This review will discuss the evidence supporting the potential nephroprotective effects of sulodexide and other glycosaminoglycans

    Non-backtracking Walk Centrality for Directed Networks

    Get PDF
    The theory of zeta functions provides an expression for the generating function of nonbacktracking walk counts on a directed network. We show how this expression can be used to produce a centrality measure that eliminates backtracking walks at no cost. We also show that the radius of convergence of the generating function is related to the spectrum of a three-by-three block matrix involving the original adjacency matrix. This gives a means to choose appropriate values of the attenuation parameter. We find that three important additional benefits arise when we use this technique to eliminate traversals around the network that are unlikely to be of relevance. First, we obtain a larger range of choices for the attenuation parameter. Second, a natural approach for determining a suitable parameter range is invariant under the removal of certain types of nodes, we can gain computational efficiencies through reducing the dimension of the resulting eigenvalue problem. Third, the dimension of the linear system defining the centrality measures may be reduced in the same manner. We show that the new centrality measure may be interpreted as standard Katz on a modified network, where self loops are added, and where nonreciprocal edges are augmented with negative weights. We also give a multilayer interpretation, where negatively weighted walks between layers compensate for backtracking walks on the only non-empty layer. Studying the limit as the attenuation parameter approaches its upper bound also allows us to propose a generalization of eigenvector-based nonbacktracking centrality measure to this directed network setting. In this context, we find that the two-by-two block matrix arising in previous studies focused on undirected networks must be extended to a new three-by-three block structure to allow for directed edges. We illustrate the centrality measure on a synthetic network, where it is shown to eliminate a localization effect present in standard Katz centrality. Finally, we give results for real networks

    Dynamic phasors to enable distributed real-time simulation

    Get PDF
    © 2017 IEEE. Distributed real-time simulation allows the sharing of simulator equipment and components connected in Hardware-In-the-Loop experiments. In this paper, we analyze the challenges of geographically distributed real-time power system simulation and how dynamic phasors could be applied to improve the accuracy of the simulation results for large time steps. The time step is of particular interest since the communication delay between simulators interconnected through wide area network is much larger than the simulation time step typically used in electromagnetic transient real-time simulations. However, commercially available real-time simulators use either the electromagnetic transient or classic complex phasor representation. Results in the dynamic phasor and electromagnetic transient domain are compared to quantify the advantage of dynamic phasor simulations in practice. The test platform for this evaluation is a power system simulator which is currently under development

    Impact of Power-to-Gas on distribution systems with large renewable energy penetration

    Get PDF
    The exploitation of the Power-to-Gas (PtG) technology can properly support the distribution system operation in case of large penetration of Renewable Energy Sources (RES). This paper addresses the impact of the PtG operation on the electrical distribution systems. A novel model of the PtG plant has been created to be representative of the entire process chain, as well as to be compatible with network calculations. The structure of the model with the corresponding parameters has been defined and validated on the basis of measurements gathered on a real plant. The PtG impact on the distribution systems has then been simulated on two network models representing a rural and a semi-urban environment, respectively. The testing has been carried out by defining a set of cases that contain critical situations for the distribution network, caused by RES plant placement. The objectives of the introduction of PtG are the reduction of the reverse power flow, as well as the reduction of the overcurrent and overvoltage issues in the distribution system. The results obtained from annual simulations lead to considerable reduction (from 78 to 100%) of the reverse power flow with respect to the base case, and to alleviating (or even solving) the overcurrent and overvoltage problems of the networks. These results indicate PtG as a possible solution for guaranteeing a smooth transition towards decarbonized energy systems. The capacity factors of the PtG plants largely vary depending on the network topology, the RES penetration, the number of the PtG plants and their sizes. From the test cases, the performance in a rural network (where the minimum capacity factor is about 50%) resulted better than in a semi-urban network (where the capacity factor values range between 21% and 60%)

    Beyond non-backtracking:Non-cycling network centrality measures

    Get PDF
    Walks around a graph are studied in a wide range of fields, from graph theory and stochastic analysis to theoretical computer science and physics. In many cases it is of interest to focus on non-backtracking walks; those that do not immediately revisit their previous location. In the network science context,imposing a non-backtracking constraint on traditional walk-based node centrality measures is known to offer tangible benefits. Here, we use the Hashimoto matrix construction to characterize, generalize and study such non-backtracking centrality measures. We then devise a recursive extension that systematically removes triangles, squares and, generally, all cycles up to a given length. By characterizing the spectral radius of appropriate matrix power series, we explore how the universality results on the limiting behaviour of classical walk-based centrality measures extend to these non-cycling cases. We also demonstrate that the new recursive construction gives rise to practical centrality measures that can be applied to large scale networks

    Circulating Levels of Proprotein Convertase Subtilisin/Kexin Type 9 and Arterial Stiffness in a Large Population Sample: Data From the Brisighella Heart Study

    Get PDF
    Proprotein convertase subtilisin/kexin type 9 (PCSK9) circulating levels are significantly associated with an increased risk of cardiovascular events. This study aimed to evaluate the relationship between circulating levels of PCSK9 and arterial stiffness, an early instrumental biomarker of cardiovascular disease risk, in a large sample of overall healthy participants

    Recycled PP for 3D Printing: Material and Processing Optimization through Design of Experiment

    Get PDF
    In this work, blends that were based on first use PP added with talc (PPt) and recycled polypropylene (r-PP) were designed and formulated, aiming at producing filaments that are suitable for 3D printing fused filament fabrication (FFF) processes. A preliminary characterization of PPt/r-PP blends at different weight ratios allowed selecting two systems showing adequate rheological behavior for FFF. The selected blends were melt compounded in a twin-screw extruder, optimizing the processing conditions through a design of experiments approach, involving the use of Taguchi's method. The materials that were prepared with the optimized processing conditions, hence showing the best performance in terms of rheological behavior and thermal characteristics, were then selected for the production of the filament and for the subsequent FFF processing. Finally, the morphology of the filament and the mechanical properties of 3D-printed samples were assessed, demonstrating the achievement of satisfactory results in terms of performances. In general, the obtained results clearly demonstrated that a proper optimization of both material and processing conditions offers the possibility of using recycled PP-based formulations for additive manufacturing processes, hence allowing a remarkable valorization of a low added-value material through its utilization for an innovative and sustainable manufacturing approach

    Bionanocomposite blown films: Insights on the rheological and mechanical behavior

    Get PDF
    In this work, bionanocomposites based on two different types of biopolymers belonging to the MaterBi® family and containing two kinds of modified nanoclays were compounded in a twinscrew extruder and then subjected to a film blowing process, aiming at obtaining sustainable films potentially suitable for packaging applications. The preliminary characterization of the extruded bionanocomposites allowed establishing some correlations between the obtained morphology and the material rheological and mechanical behavior. More specifically, the morphological analysis showed that, regardless of the type of biopolymeric matrix, a homogeneous nanofiller dispersion was achieved; furthermore, the established biopolymer/nanofiller interactions caused a restrain of the dynamics of the biopolymer chains, thus inducing a significant modification of the material rheological response, which involves the appearance of an apparent yield stress and the amplification of the elastic feature of the viscoelastic behavior. Besides, the rheological characterization under non-isothermal elongational flow revealed a marginal effect of the embedded nanofillers on the biopolymers behavior, thus indicating their suitability for film blowing processing. Additionally, the processing behavior of the bionanocomposites was evaluated and compared to that of similar systems based on a low-density polyethylene matrix: this way, it was possible to identify the most suitable materials for film blowing operations. Finally, the assessment of the mechanical properties of the produced blown films documented the potential exploitation of the selected materials for packaging applications, also at an industrial level
    • …
    corecore