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Walks around a graph are studied in a wide range
of fields, from graph theory and stochastic analysis
to theoretical computer science and physics. In many
cases it is of interest to focus on non-backtracking
walks; those that do not immediately revisit their
previous location. In the network science context,
imposing a non-backtracking constraint on traditional
walk-based node centrality measures is known to
offer tangible benefits. Here, we use the Hashimoto
matrix construction to characterize, generalize and
study such non-backtracking centrality measures. We
then devise a recursive extension that systematically
removes triangles, squares and, generally, all cycles
up to a given length. By characterizing the spectral
radius of appropriate matrix power series, we explore
how the universality results on the limiting behaviour
of classical walk-based centrality measures extend to
these non-cycling cases. We also demonstrate that
the new recursive construction gives rise to practical
centrality measures that can be applied to large scale
networks.

1. Introduction
Our work is motivated by the wide range of areas in
mathematics, computer science and physics where the
concept of non-backtracking has proved useful, including
spectral graph theory [1–3], number theory [4], discrete
mathematics [5,6], quantum chaos [7], random matrix
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Figure 1. An undirected graph with five nodes.

theory [8], stochastic analysis [9], applied linear algebra [10] and computer science [11,12]. In
particular, non-backtracking has recently been introduced in the field of network science, where
it has been shown to form the basis of effective algorithms for finding communities [13,14],
optimizing percolation, [15,16], comparing networks [17,18] and assigning centrality values to
nodes [13,14,19–25].

A key novelty in our work is to extend the concept of non-backtracking to the case of non-
triangulating, non-squaring and generally the avoidance of all cycles. To make the idea practical, we
develop an appropriate recursive extension to the Hashimoto matrix construction which allows
the required quantities to be computed via matrix powering and projection. We study theoretical
properties of the resulting network centrality measures and show that they can be applied to
large-scale data sets. Because the basic Hashimoto matrix construction is not standard in graph
theory, and has been derived from different viewpoints in other fields, we give in subsection (a)
a simple motivating illustration. This allows us to explain the notation and set up the main
combinatoric task.

(a) Illustration
Figure 1 shows an undirected, unweighted graph with five nodes. It is convenient to regard

each undirected edge as a reciprocal pair of directed edges. We write i→ j to denote the directed
edge from node i to node j, so, for example, the connection between nodes 1 and 2 in Figure 1
gives rise to 1→ 2 and 2→ 1. The adjacency matrix for this graph has the form

A=


0 1 0 0 0

1 0 1 1 1

0 1 0 1 0

0 1 1 0 1

0 1 0 1 0

∈R5×5.

Here, for example, a1,2 = 1 because there is an edge 1→ 2 and a1,3 = 0 because there is no edge
1→ 3.

A walk around a graph is any route from node to node that makes use of the available edges.
The adjacency matrix provides a convenient way to count walks. For example the fourth power of
A has its 1, 5 entry equal to 6 because there are six distinct walks of length four (that is, using four
edges) starting at node 1 and finishing at node 5: these are 1→ 2→ 1→ 2→ 5, 1→ 2→ 3→ 2→
5, 1→ 2→ 3→ 4→ 5, 1→ 2→ 4→ 2→ 5, 1→ 2→ 5→ 2→ 5, and 1→ 2→ 5→ 4→ 5. Generally
(Ar)ij counts the number of distinct walks of length r starting at node i and finishing at node j;
see, for example, [26, Theorem 2.2.1].

An operation which is central to our work is the construction of the line graph [27]. Here, edges
in the original graph are regarded as nodes in the corresponding line graph. Nodes i→ j and
k→ l in this new line graph are connected if j = k, that is, if, together, they represent a walk of
length two in the original graph.
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1→ 2 2→ 1 2→ 3 3→ 2 2→ 4 4→ 2 2→ 5 5→ 2 3→ 4 4→ 3 4→ 5 5→ 4

1→ 2 1? 1 1 1
2→ 1 1?

2→ 3 1? 1
3→ 2 1 1? 1 1
2→ 4 1? 1 1
4→ 2 1 1 1? 1
2→ 5 1? 1
5→ 2 1 1 1 1?

3→ 4 1 1?

4→ 3 1 1?

4→ 5 1 1?

5→ 4 1 1 1?

Table 1. Adjacency matrix for the line graph of the graph in Figure 1. Entries that represent
backtracking are starred.

For illustration, we show in Table 1 the entries in the adjacency matrix for the line graph of the
graph in Figure 1. Here we have chosen a specific ordering of the edges in the original graph.
Zero entries have been left blank. We will denote this 12× 12 matrix by W . Note that W is
not symmetric; for example, w1→2, 2→3 = 1 but w2→3, 1→2 = 0. Essentially, W is encoding the
presence of walks of length two in the original graph. Its second power, W 2, then counts walks
of length three. For example, by definition,

(W 2)1→2, 3→4 =
∑
a→b

w1→2, a→b wa→b, 3→4,

which reduces to 1 because the only nonzero product in the sum arises fromw1→2, 2→3 w2→3, 3→4,
corresponding to the walk 1→ 2→ 3→ 4 in the original graph. Similarly, W 3 counts walks of
length four in the original graph. For example,

(W 3)1→2, 4→2 =
∑
a→b

∑
c→d

w1→2, a→b wa→b, c→d wc→d, 4→2,

which equals 2 because of the existence of the two walks 1→ 2→ 3→ 4→ 2 and 1→ 2→ 5→
4→ 2 in the original graph.

Generally, the rth power of W counts walks of length r + 1 in the original graph. Because
of our choice of labelling, the second, third, fifth and seventh rows of W r record walks starting
with an edge of the form 2→ ?, and the first, fourth, sixth and eighth columns record walks
that end with an edge of the form ?→ 2. It follows that by taking linear combinations of the
appropriate rows and columns we can recover the node-based counts for walks starting at node
2 and finishing at node 2. Similar remarks apply for all nodes, and hence an appropriate linear
projection of W r recovers all the walk count information in Ar+1. This fact is formalized in part
i) of Proposition 2.4.

From the perspective of this work, a major benefit of the line graph setting is that we may
modify the adjacency matrix W in a way that allows us to count only non-backtracking walks;
that is, walks which never leave a node and then immediately return to it. In Table 1 the starred
entries represent reciprocated pairs of edges, such as 1→ 2 and 2→ 1. Replacing all such entries
by zero, thereby creating the Hashimoto matrix or non-backtracking matrix [28] and calling this new
matrix B, it follows that powers of B will automatically count non-backtracking walks, and the
same projection method gives node-based results; see part ii) of Proposition 2.4.

The remainder of the manuscript is organized as follows. In Section 2 we set up the full
notation, discuss relevant network centrality measures and describe the benefits that have been
found to arise when non-backtracking is introduced. Section 3 then exploits the Hashimoto matrix
approach in order to characterize non-backtracking centrality measures based on general Taylor
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Series expansions. For such measures, it is of interest to characterize universality behaviour
arising at the radius of convergence, and in Section 4 we study this issue. In Section 5 we then
develop and analyse a recursive strategy that promotes non-backtracking into non-triangulating,
non-squaring, and, generally, the removal of all cycles. Having derived the new construction, we
consider computational complexity issues and then analyse the universality behaviour. Section 6
gives the results of computational experiments that illustrate the feasibility of non-cycling
centrality measures on real networks.

2. Preliminary Material
Our fundamental object of study is an undirected graph. However, as illustrated in subsection 1
(a), the operations that we apply will typically generate new directed graphs. Hence, we give
definitions for the general case of a directed graph G = (V, E), with unweighted edges, and no
self-loops or multiple edges. We denote by n the number of nodes and bym the number of edges.

Remark 2.1. For undirected graphs, we interpret each undirected edge i− j as a pair of directed edges
i→ j and j→ i, and we denote by m the total number of such directed edges.

The graph G can be represented by means of its adjacency matrix A= (aij)∈Rn×n, whose
nonzero entries are aij = 1 if and only if i→ j ∈ E . The matrix A thus contains m nonzeros, one
for each edge in the graph. We use I , 1 and 0 to denote the identity matrix, the vector of ones
and the vector of zeros, respectively, and a subscript will indicate the dimension where this is not
obvious. For every edge i→ j ∈ E we will call i the source node of the edge and j the target node
of the edge. The edge j→ i will be referred to as the reciprocal of edge i→ j. The number douti

of edges originating from node i will be referred to as the out-degree of node i, while the number
dini of edges targeting node i will be referred to as the in-degree of node i. For undirected graphs,
douti = dini =: di for all nodes i∈ V and this common value is usually referred to as the degree of
node i. A bold font denotes a vector, so di is the ith component of d. A walk of length r is a
sequence of r + 1 nodes i1, i2, . . . , ir+1 such that i`→ i`+1 ∈ E for all `= 1, . . . , r. A walk is said
to be backtracking if it uses a consecutive pair of reciprocal edges and non-backtracking otherwise.
We will use the acronyms NBT and NBTW for non-backtracking and non-backtracking walk. A
path is a walk with no repeated nodes, with the only possible exception of the first and last nodes.
If these coincide the path is then called a cycle. We mentioned in Section 1 (a) that the entries
of the rth power of A record the number of walks of length r; that is, (Ar)ij is the number of
distinct walks of length r from node i to node j, for all r= 0, 1, . . .. Following [24], we denote by
pr(A) the non-backtracking analogue of Ar , so the (i, j)th entry of pr(A) contains the number of
NBTWs of length r from node i to node j. We use the convention that p0(A) = I . It is readily seen
that p1(A) =A and p2(A) =A2 −D, where D is the diagonal matrix such that Dii = (A2)ii. It
has been proved [5,10] that for all r≥ 0 the matrices pr+3(A) satisfy a four-term recurrence when
AT 6=A:

pr+3(A) = pr+2(A)A+ pr+1(A)(I −D)− pr(A)(A−A ◦AT ),

where ◦ denotes the Schur (entrywise) product.
In the undirected setting, where A=AT , this reduces to a three-term recurrence [6]: for all

r≥ 1,
pr+2(A) = pr+1(A)A+ pr(A)(I −D). (2.1)

As in the example of section 1 (a), we denote by W ∈Rm×m the adjacency matrix whose
entries are Wi→j,`→h = δj`, where δj` is the Kronecker delta. So W represents a network with
m nodes, each corresponding to an edge in G, and a connection exists between two nodes if the
corresponding edges in G are such that the target node of the first coincides with the source node
of the second, and the two edges thus form a walk of length two in G. We refer to W as the
edge-matrix. If G is undirected, then W is the adjacency matrix of the line graph corresponding to
G. Finally, we denote by B ∈Rm×m the non-backtracking version of W ; that is, the adjacency
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matrix of the network obtained by connecting two of them nodes, each corresponding to an edge
in G, if and only if the corresponding two edges form a NBTW of length two in G. We note that
B =W −W ◦WT . We may aso write

Bi→j,`→h = δj`(1− δih). (2.2)

The matrix B is often referred to as the Hashimoto matrix [28] or the non-backtracking edge-matrix.

(a) Equivalent centrality vectors
A central issue in network science is to determine the most important players within the graph.
This activity has applications in a wide range of areas, ranging from social science, marketing
and politics to epidemiology and well-being [27,29]. The problem may be tackled using centrality
measures. These functions, which are invariant under relabelling of the nodes in the graph, assign
to each node a non-negative number that quantifies its importance—the higher the value, the
more important the node. We take the standard viewpoint that the value assigned to each node
is not interesting per se; we are concerned with the ranking that arises. It thus follows that two
centrality vectors that assign different values to the nodes but induce the same ranking are
equivalent. In this sense, it is worth pointing out that neither shifting a centrality measure with
a uniform vector nor multiplying a centrality measure with a positive scalar changes the ranking
of the nodes. We may, indeed, define an equivalence class among centrality vectors as follows. Let
u,v ∈Rn be two non-negative, non-zero vectors. Then

u∼ v ⇔ ∃ α> 0, β ≥ (−min
i

(v)i) such that: u= α(v + β1). (2.3)

Two different representatives of the same equivalence class yield the same node ranking. We note
in passing that one could consider more general equivalence relations as long as they preserve the
ranking. However, for the purposes of this work, restricting our study to (2.3) suffices to compare
the rankings induced by parametric matrix functions and those induced by their limits.

Many centrality measures have been introduced over the years. In this work we focus on the
very broad class of walk based centrality measures induced by functions [30–32]

f(z) =

∞∑
r=0

crz
r ∈P, (2.4)

where P is the set of functions analytic in a neighborhood of zero that can be expressed with a
Maclaurin series with non-negative coefficients cr for all r= 0, 1, . . .

Clearly, f(z) = ez and f(z) = (1− z)−1 belong to P . We will denote by ρf the radius of
convergence of the series f(z), which can be finite or infinite.

For a function f ∈P defined on the spectrum of a matrix A, we will refer to (f(tA))ii as
the f -subgraph centrality of node i, and to (f(tA)1)i as the f -total communicability of node i.
Here, t > 0 is a parameter that we are free to choose, with the constraint that the power series
must converge. From the power series expansion of f and from the fact that powers of A count
walks of given lengths, it follows that the f -subgraph centrality of a node measures how strongly
each node is involved in closed walks of any length; similarly, its f -total node communicability
measures how well this node communicates with all the nodes in the network. We note that in
the classic Katz case, where f(z) = (1− z)−1, the parameter t represents an attenuation factor
that downweights walks of length k by a factor tk [33], and hence, in a message-passing setting, t
may be viewed as the probability of successfully traversing an edge.

These concepts can be extended to the framework of NBTWs, by defining the NBT f -subgraph
centrality and NBT f -total (node) communicability of node i as

x(t)i =

( ∞∑
r=0

cr t
r pr(A)

)
ii

and y(t)i =

( ∞∑
r=0

cr t
r pr(A)1

)
i

, (2.5)

respectively, for non-negative coefficients cr .
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It is intuitively reasonable that eliminating backtracking walks, and hence focusing on
traversals that explore the network more widely, should lead to an improved centrality measure
in applications where a message-passing or disease-spreading analogy is relevant. In the case of
random walks, it is known that NBTWs mix faster [9]. For NBT generalizations of Katz centrality,
three concrete benefits have been identified:

• Localization: Suppose we have a family of non-negative unit Euclidean norm vectors
x∈Rn, defined for all large n. Then, from [34], the inverse participation ratio is defined
to be S(x) :=

∑n
i=1 x

4
i . The family of vectors is said to be localized if S =O(1) and

nonlocalized if S = o(1), as n→∞. Intuitively, localization implies that the majority of
the mass in the vector is confined to a finite subset of components. When x is a centrality
measure, localization corresponds to the undesirable circumstance where the algorithm
has focused almost exclusively on a subset of the network, and does not give useful
information about the relative importance of the majority of nodes. In this context, the
effect was first highlighted in [25]. Numerical tests in [19,24] showed that a NBT version
of the standard Katz algorithm [33] avoids localization effects observed for Katz on a
range of real networks. Furthermore, rigorous asymptotic analysis on specific network
classes backed up these results; for example, in [19] for a directed windmill network with
an arbitrary number of blades.
• Range of parameter values: The classic Katz centrality measure [27,29,33] assigns the

value
(
(I − tA)−11

)
i

to node i. To produce a well-defined non-negative measure, the

downweighting parameter t must lie in the range 0< t< 1/ρ(A), where ρ(·) denotes the
spectral radius. For the NBT version yi(t) in (2.5) with cr ≡ 1, it was shown in [24] that t
must be chosen in the range 0< t< 1/ρ(C), where

C =

 A (I −D) (A ◦AT −A)
I 0 0

0 I 0

∈R3n×3n. (2.6)

By construction, since the NBT count cannot exceed the standard walk count, this radius
of convergence must be larger than the upper limit 1/ρ(A) for Katz. In practice, the
difference can be significant, and hence NBT Katz can support a much greater choice of
downweighting parameters, allowing global features of the network to have a stronger
influence on the measure.
• Pruning: From a practical viewpoint, it appears that ρ(C) in (2.6) must be computed, or

approximated, in order to determine an appropriate range of t values. However, it was
shown in [19] that ρ(C) does not change when leaves, source nodes and dangling nodes
are removed. (The equivalent statement is not true for standard Katz, where ρ(A) is not
invariant to such deletions.) Moreover, these operations can be performed recursively
until no such nodes exist. On realistic networks, these low cost pruning steps were found
to reduce the typical network size by around 30%, making NBT Katz more efficient than
standard Katz.

It is also of interest to characterize the form of these centrality measures at their radius of
convergence; for example, it was also shown in [19] that the NBT eigenvector approach proposed
in [25] arises as the limiting case t→ 1/ρ(C)− in NBT Katz.

Our aim here is to show how NBTW-based measures can be studied, and generalized, by
working in the edge space and then projecting. We will show that this approach allows us to
1) unify and extend the current theory, yielding results that hold for any analytic function, 2)
describe limiting behaviour at the radius of convergence, and 3) extend to the case where walks
avoid triangles, squares and, generally, all cycles up to any fixed length.
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(b) Source and Target Matrices
We now collect together some results that allow us to perform projections from the edge space
onto the node space. Many of these results can be found in disparate areas of the literature,
especially for the case of undirected graphs, [35,36]. We present and justify them here because
they form the core of our analysis.

Definition 2.2. Let G be an unweighted, possibly directed, graph with n nodes and m edges. Its source
and target (or terminal) matrices L,R ∈Rm×n are entrywise defined as:

Lei =

{
1 if edge e has the form i→ ?

0 otherwise
and Rej =

{
1 if edge e has the form ?→ j

0 otherwise
,

respectively, for all e= 1, 2, . . . ,m and for all i, j = 1, 2, . . . , n.

Note that both L and R have precisely one nonzero element equal to 1 in every row. This
identifies the source/target node of the corresponding edge; hence, L1n =R1n = 1m. We also
note in passing that, for directed graphs, the matrix L−R is an incidence matrix.

The following proposition summarizes properties of the source and target matrices that were
already observed in [35,36].

Proposition 2.3. Let G be an unweighted, directed, graph with no self-loops nor multiple edges. Then,
in the above notation, LTR=A, RLT =W , LTL is diagonal with the out degrees on the diagonal, and
RTR is diagonal with the in degrees on the diagonal. If the network is undirected, thenRTR=LTL=D.

Proof. The results can be proved entrywise from the definition of the source and target matrices.
For example, to confirm the first equality we note that for all i, j ∈ V it holds that (LTR)ij =∑m
e=1 LeiRej = 1 if and only if there is an edge from node i to node j and is 0 otherwise. So

(LTR)ij = aij .

The following proposition summarizes useful properties of the source and target matrices and,
in particular, shows that they can be used to move from the edge space to the node space.

Proposition 2.4. Let G be an unweighted, possibly directed, graph with no self-loops nor multiple edges.
Then i) LTW rR=Ar+1, for all r= 0, 1, . . .;

ii) LTBrR= pr+1(A), for all r= 0, 1, . . .;
iii) LT (WT ◦W )R=RT (WT ◦W )L=D, where D is diagonal with Dii = (A2)ii;
iv) RTWL is a diagonal matrix whose ith diagonal element is dini d

out
i ( = d2i , if G is undirected);

v) RTBL is a diagonal matrix whose ith diagonal element is equal to the number of NBTWs of
length two of the form ?→ i→ ?.

Proof.
i) We proceed by induction. The result has been proved for r= 0 in Proposition 2.3.

Suppose that LTW r−1R=Ar up to a certain r≥ 1, then from Proposition 2.3 LTW rR=

LTW r−1RLTR=ArA=Ar+1.
ii) Let us first note that Bref is the number of NBTWs of length r + 1 in G starting with edge
e and ending with edge f . Then (LTBrR)ij =

∑m
e=1

∑m
f=1 LeiB

r
efRfj is the number of

NBTWs of length r + 1 starting from node i and ending at node j, which is pr+1(A).
iii) Exploiting the fact that p2(A) =A2 −D it follows thatLT (WT ◦W )R=LT (W −B)R=

A2 − p2(A) =D. Moreover, RT (W ◦WT )L= (LT (WT ◦W )R)T =D.
iv) The result follows directly from Proposition 2.3.
v) For all i, j ∈ V we have that (RTBL)ij =

∑m
e=1

∑m
f=1ReiBefLfj counts the number of

NBTWs of length two formed by edges e and f , and such that e targets node i and f

originates from node j. Clearly, this sum is always zero, unless i= j, and in this case the
sum equals the number of NBTWs of length two through node i.
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In the next section, we describe how to exploit the matrices L and R to compute the NBTW
generating function induced by any analytic function. We emphasize that our basic object of
study in the remainder of this work is an undirected network, so that A=AT and the matrices
pr(A) satisfy the recurrence (2.1), but directed networks will arise when we use the Hashimoto
construction and its extensions.

3. Projection Techniques for Non-backtracking Centralities
Consider a function f(z)∈P in (2.4), which we recall is analytic in a neighbourhood of zero, with
cr > 0 for all r and radius of convergence ρf . Define the linear operator ∂ acting on f as follows:

∂f(z) :=

∞∑
r=0

cr+1z
r =

{
f(z)−f(0)

z if z 6= 0;

f ′(0) if z = 0,

so that ∂f(z)∈P .
Before stating our first results on projection techniques for computing non-backtracking walk

based centrality measures, let us remark that, sinceA is symmetric, its spectrum is real. Moreover,
the spectrum of W will be real also, even though W is not symmetric in general. Indeed, from
Proposition 2.3 we know that A=LRT and W =RTL, and Flanders Theorem [37, Theorem 2]
implies that the spectrum of W coincides with that of A, up to the multiplicity of 0.

Let us also recall that the spectrum ofB coincides with the reversal (see, e.g., [38]) of that of the
symmetric matrix polynomial [39] M(t) = I − tA+ t2(D − I), i.e., that of the deformed graph
Laplacian; see, e.g., [6,24] and references therein. We observe also that the reverse of the graph
Laplacian has been called Bethe-Hessian by some authors [40,41]. In [24] it was also shown that
for every λ in the spectrum of M(t), we have |λ| ≥ 1/ρ(A). (Below, in Proposition 5.9, we will
improve this result and show that the inequality is always strict for a non-empty graph.)

In the remainder of this paper, we will often implicitly make use of the following classical
result; see, for example, [42, Theorem 4.7].

Theorem 3.1. Suppose f has a Taylor series expansion

f(z) =

∞∑
r=0

cr(z − z0)r
(
cr =

fr(z0)

r!

)
with radius of convergence ρf . If A∈Cn×n, then f(A) is well defined and is given by

f(A) =

∞∑
r=0

cr(A− z0I)r

if and only if each of the distinct eigenvalues λ1, . . . , λs of A satisfies one of the conditions:

(i) |λi − z0|< ρf ;
(ii) |λi − z0|= ρf and the series for f (ni−1)(λ), where ni is the index of λi, is convergent at λ= λi

for i= 1, . . . , s.

Finally, let us state here the following simple consequence of the Cauchy-Hadamard Theorem
[43, Theorem 3.39], which relates the radii of convergence of f and ∂f .

Lemma 3.2. Let f(z) =
∑∞
r=0 crz

r and let ∂f(z) =
∑∞
r=0 cr+1z

r . Then, f(z) converges for |z|< ρf
if and only if ∂f(z) converges for |z|< ρf .

Using these remarks and the results from the previous section, we may prove the following.
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Theorem 3.3. Let G be an unweighted, possibly directed, graph with no self-loops nor multiple edges. In
the above notation, for 0< t< ρf/ρ(A) it holds that

∞∑
r=0

crt
rAr = c0I + tLT [∂f(tW )]R

and
∞∑
r=0

crt
rpr(A) = c0I + tLT [∂f(tB)]R. (3.1)

Proof. From the definition of ∂f it follows that

∂f(tW ) =

∞∑
r=0

cr+1t
rW r and ∂f(tB) =

∞∑
r=0

cr+1t
rBr,

implying by i) and ii) in Proposition 2.4 that

tLT [∂f(tW )]R=

∞∑
r=0

cr+1t
r+1Ar+1 and tLT [∂f(tB)]R=

∞∑
r=0

cr+1t
r+1pr+1(A)

and thus the conclusion.

Theorem 3.3 has several implications. For example, in the framework of undirected networks,
setting f(z) = (1− z)−1 and observing that ∂f(z) = f(z), we obtain for 0< t< 1/ρ(A)

In + tLT [(I − tW )−1]R= (I − tA)−1 (3.2a)

and

In + tLT [(I − tB)−1]R=

∞∑
r=0

trpr(A) = (1− t2)M(t)−1, (3.2b)

where M(t) = I − tA− t2(I −D) is the deformed graph Laplacian of the network. We note that
the second equality in (3.2b) was proved in [24]. These results give an equivalence in the sense
of (2.3) between Katz centrality on W projected through LT and Katz centrality on A (3.2a), and
between NBT resolvent based centrality on A and Katz centrality on B projected via LT (3.2b);
indeed, since R1n = 1m, we have

1n + tLT (I − tW )−11m = (I − tA)−11n (3.3a)

and
1n + tLT (I − tB)−11m = (1− t2)M(t)−11n. (3.3b)

More generally, Theorem 3.3 implies that we can compute the NBTW generating function
associated with (2.4) via (3.1), and thus rewrite (2.5), for appropriate values of t, as

x(t)i = c0 + t(Lei)
T ∂f(tB)(Rei) and y(t)i = c0 + t(Lei)

T ∂f(tB)1m.

This approach induces a duality operation on graphs as described in Table 2, which, however,
is not invertible; indeed, the dual of the dual graph is not the primal graph.

It was shown in [19,20,24] that there are more direct ways to compute NBTW centrality
measures that do not rely on this projection technique. However, as we show below, this approach
has the advantages of (1) being simpler to describe for a general f(z), (2) unifying the theory, so
that universality results may be studied, and (3) extending to walks that do not allow for cycles
up to any fixed length.

4. Limiting Behaviour and Universality
It is well known that the classic Katz centrality measure becomes equivalent in the sense of (2.3)
to the so-called eigenvector centrality measure [44] as the downweighting parameter approaches
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Table 2. Relationships between walks and matrices in the primal and dual spaces.

Primal Dual
Edge, i.e., ones in A Node

Walk of length 2 Edge, i.e., ones in W
NBTW of length 2 Nonreciprocal edge, i.e., ones in B
BTW of length 2 Reciprocal edge, i.e., ones in W −B =WT ◦W

Ar+1 W r

pr+1(A) Br

its upper limit, and becomes equivalent to degree centrality as the downweighting parameter
approaches zero [27]. In [45] the authors derived a general set of such results for walk-based
centrality measures. Here, we show how to obtain non-backtracking versions of these results via
the Hashimoto matrix construction.

We begin by relating the (left and right) Perron eigenvectors ofB and the NBT eigenvector; that
is, the eigenvector ofM(t) associated with the smallest eigenvalue. (Note thatM(t) is symmetric,
and hence its left and right eigenvectors are the same.) Throughout this work, t→ t? for any t? > 0

is taken to be the limit from below, and t→ 0 is taken to be the limit from above.

Theorem 4.1. Let A be the adjacency matrix of a simple, connected network with at least two cycles.
Let B be its Hashimoto matrix and M(t) be its deformed graph Laplacian. Moreover, let ω ∈Rn and
z,w ∈Rm be non-negative vectors with ‖w‖1 = ‖z‖1 = ‖ω‖1 = 1 such that M(µ)ω= 0, µBw=w,
and µzTB = zT , where µ is the smallest eigenvalue of M(t). Then,

ω=LTw=RT z.

Proof. Observe first that by [24, Proposition 7.5] µ is a simple eigenvalue ofM(t) and I − tB (both
seen as matrix polynomials), and that it is their smallest. Let us decompose both M(t) =M(t)T

and I − tB via the respective analytic SVDs:

M(t) =UM (t)ΣM (t)UM (t)T , I − tB =UB(t)ΣB(t)VB(t)
T .

Denote now by, respectively, uM,n(t), vB,m(t), uB,m(t), σM,n(t), σB,m(t) the last columns of
UM (t), VB(t), UB(t) and the last diagonal elements of ΣM (t) and ΣB(t). Then, arguing similarly
to the proofs of [19, Theorem 6.1] and [24, Theorem 10.1] we have the expansions

(1− t2)M(t)−11n =
(1− t2)uM,n(t)

T1n

σM,n(t)
uM,n(t) +O((t− µ)0),

(I − tB)−11m =
uB,m(t)T1m

σB,m(t)
vB,m(t) +O((t− µ)0),

(I − tBT )−11m =
vB,m(t)T1m

σB,m(t)
uB,m(t) +O((t− µ)0).

Moreover, it holds that

lim
t→µ

uM,n(t) =
ω

‖ω‖2
, lim

t→µ
uB,m(t) =

z

‖z‖2
, lim

t→µ
vB,m(t) =

w

‖w‖2
.

Multiplying (3.3b) by σM,n(t) and taking the limit t→ µ we see that there exists α∈R, α 6= 0,
such that ω= αLTw. Moreover, since L,w,ω are all non-negative, we have α> 0. Similarly,
multiplying the transpose of (3.3b) by σM,n(t) and taking the limit t→ µ we see that there exists
β > 0 such that ω= βRT z. To conclude the proof, note that since w, z≥ 0 and ‖w‖1 = ‖z‖1 = 1,
the fact that L,R have precisely one element equal to 1 in each row yields ‖LTw‖1 = ‖RT z‖1 = 1,
and thus α= β = 1.
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We note that we are correcting here a typo in the proof of Theorem 6.1 in [19].
We now consider the case where there is a single cycle present within the graph.

Lemma 4.2. LetB be the Hashimoto matrix of a simple, connected graph that contains precisely one cycle.
Then:

(i) The Perron eigenvalue of B is 1 and it has geometric and algebraic multiplicity two. Moreover,
suppose that we label the edges within four sets as follows: first all the edges going through the
cycle in one direction, which, without loss of generality, we call counterclockwise; then all the edges
going through the cycle clockwise; then all the edges not on the cycle (if any) going towards the
cycle; finally all the edges not on the cycle (if any) going away from the cycle. Then, partitioning
according to these four sets, a basis for ker(B − I) is given by

F =


1 0

0 1

1 1

0 0

∈Rm×2.

(ii) We have

LTF =
[
1 1

]
∈Rn×2.

Proof. (i) That 1 is the Perron eigenvalue of B, and that its algebraic multiplicity is two, is a
consequence of [2, Equation (2.3) and Corollary 1] and [24, Lemma 6.2]. Note that (BF )e1
is equal to the number of NBTWs of length two over edge e and either an edge that goes
through the cycle counterclockwise or an edge that goes towards the cycle. This number
is 1 if edge e either goes counterclockwise through the cycle or goes towards the cycle,
and it is 0 otherwise. Similarly (BF )e2 counts NBTWs of length two that consist of edge
e and an edge that either goes clockwise through the cycle or goes towards the cycle.
This is 1 if edge e either goes clockwise through the cycle or points towards the cycle,
and 0 otherwise. We conclude thatBF = F . Moreover, manifestly F has rank two. Hence
the geometric multiplicity of the eigenvalue 1 is exactly two, as this cannot exceed the
algebraic multiplicity.

(ii) By definition of L and F , the (i, 1)th element of LTF counts how many edges, among
those either in the cycle and going counterclockwise or not on the cycle and going
towards it, start from node i. There is precisely one such edge for all i. Replacing
“counterclockwise” with “clockwise”, the same argument shows that (LTF )i2 = 1.

We now prove a universality result for NBTW-based centralities that generalizes the Katz
version in [24, Theorem 10.1] and echoes the result presented in [45] for classical centralities.
Recall that the equivalence relation is defined in (2.3).

Theorem 4.3. Let f(z) =
∑
r crz

r with cr > 0 for all r and with radius of convergence ρf , and suppose
that f(ρf ) diverges. Let A be the adjacency matrix of a simple and connected graph, B its Hashimoto
matrix and t∈ (0, t), with t= ρf/ρ(B). Then the NBT f -subgraph centrality vector x(t) in (2.5) and the
NBT f -total communicability vector y(t) in (2.5) are such that

x(t→ 0)∼

{
1 if the graph is a tree
d(`) otherwise

and y(t→ 0)∼ d,

where ` > 2 is the length of the shortest cycle in the graph (if any), d(`) is the vector whose ith entry is the
number of cycles of length ` involving node i, and d is the vector of degrees. Moreover,
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(i) if the graph contains at least two cycles, then

x(t→ t)∼ω ◦ ω and y(t→ t)∼ω,

where ω is as in Theorem 4.1.
(ii) if the graph contains exactly one cycle, then x(t→ t)i depends only on the distance of node i from

the cycle and
y(t→ t)∼ 1;

(iii) if the graph is a tree, then t=∞ and

x(t→ t)∼ 1 and y(t→ t)∼ pκ(A)1,

where κ is the length of the longest non-backtracking walk in the graph.

Proof. We may obtain t→ 0 limits directly from the series expansions. We begin by considering
x(t). If the graph is a tree, there are no closed walks and thus x(t→ 0) = c01∼ 1. Suppose now
that there is at least one cycle in the graph and that the length of the shortest cycle is ` > 2. Then
working entrywise, for all i= 1, 2, . . . , n we have

x(t)i = c0 + c1tAii + c2t
2(A2 −D)ii + c3t

3p3(A)ii + · · · = c0 + c`t
`p`(A)ii +

∑
r>`

crt
rpr(A)ii.

Letting p(r) be the vector whose ith entry is the element pr(A)ii for all r≥ 3, we have

x(t)∼ x(t)− c01
c`t`

= p(`) +
∑
r>`

cr
c`
tr−`p(r)→ p(`).

Finally, we note that since there are no cycles of length< `, then p(`) = d(`). The result y(t→ 0)∼
d follows similarly.

We now prove the statements about the upper limit.

(i) If the graph contains at least two cycles, then ρ(B)> 1 [24]. From Theorem 3.3 it follows
that

x(t)i ∼ eTi L
T (

∞∑
r=0

cr+1t
rBr)Rei = eTi L

T ∂f(tB)Rei (4.1a)

and similarly, using the fact that R1n = 1m,

y(t)∼LT ∂f(tB)1m. (4.1b)

By Lemma 3.2 and standard results in matrix theory, the matrix function ∂f(tB) has
the same radius of convergence of f(tB), that is, t= ρf/ρ(B). To study the limit t→ t,
we can use the definition of a matrix function based on the Jordan decomposition of a
matrix [42, Definition 1.2]. This leads to an argument along the lines of [45, Theorem 5.2].
(Note that B can be taken, with no loss of generality, to be irreducible, see [24, Proof of
Proposition 7.5]; note also the subtleties discussed in [45, Remark 1] necessary to deal with
the case whenB is imprimitive.) Since this is a standard approach, we skip the details and
describe the result: given the left and right Perron eigenvectors of the Hashimoto matrix
w, z∈Rm, normalized so that ‖w‖1 = ‖z‖1 = 1, we have

∂f(tB) = γ∂f(ρf t/t)wzT +O(1)

for some γ > 0. Using the latter equality, equation (4.1a), and Theorem 4.1 it follows that
for all i= 1, 2, . . . , n

x(t→ t)i ∼ (eTi L
Tw)(zTRei) = ω2

i ,

where M(1/ρ(B))ω= 0, and thus x(t→ t)∼ω ◦ ω. Similarly, since ‖z‖1 = 1 and z≥ 0,
we have

y(t→ t)∼LTw=ω.
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(ii) If the graph contains precisely one cycle, then ρ(B) = 1 has geometric multiplicity 2 and,
up to relabelling of the nodes, F defined as in Lemma 4.2 is a basis for ker(B − I). Hence,
for some Z ∈Rm×2, when t→ 1 we have

∂f(tB) = ∂f(t)FΓZT +O(1),

where Z ≥ 0 and Γ ∈R2×2. Using LTF = [1n 1n] from Lemma 4.2, we see from (4.1b)
that

y(t→ 1)∼ [1n 1n]ΓZ
T1n,

so y(t→ 1)∼ 1n. For the f -subgraph centrality, note that

x(t→ 1)i ∼
∞∑
r=3

cr(pr(A))ii.

Suppose that the unique cycle has length ` and that node i has a distance of k edges from
the cycle (k= 0 if node i belongs to the cycle): then, for r≥ 1,

(pr(A))ii =

{
2 if r= 2k + h` for some h≥ 1

0 otherwise.

Hence,

x(t→ 1)i ∼
∞∑
r=3

cr(pr(A))ii = 2

∞∑
h=1

c2k+h`.

(iii) If the graph is a tree, i.e., it does not contain any cycle, then ρ(B) = 0 and thus t=∞.
Moreover, pr(A)ii = 0 for all r≥ 1 and for all i, so that x(t) = c01 and hence x(t→∞)∼
1. Since the graph is a tree, it also follows that the matrix power series is a polynomial in
t; let κ be the length of the longest non-backtracking walk in the graph, i.e., the diameter
of the graph. Then pr(A) = 0 for all r > κ and thus

y(t→∞)∼ pκ(A)1n.

Theorem 4.3 highlights very different behaviour of the two types of centrality. It is intuitively
clear that the NBT constraint in f -total communicability should become irrelevant as t→ 0; here
walks of length one dominate, and these never backtrack. However, for f -subgraph centrality, the
shortest closed walks under the NBT constraint are cycles of length ` > 2. Theorem 4.3 shows that
in the generic case where the graph contains at least two cycles, as t→ t both centrality measures
converge to an equivalent of the projection of the Perron eigenvector of M(t) obtained via LT .
In the specific cases when the graph either contains exactly one cycle or none, we again have a
mismatch between the limiting behaviour of the two NBT f -centrality measures. The qualitatively
different behaviour when there are two or more cycles is intuitively explained by the fact that the
presence of at least two cycles allow us to “change direction" when walking around the network.
If the graph contains only one cycle, then in the edge space we have two connected components,
one corresponding to the cycle being visited clockwise and one corresponding to the cycle being
visited counterclockwise. On the other hand, if we have two cycles, then in the edge-space we
have one strongly connected component instead of two.

5. Beyond non-backtracking: non-k-cycling
The projection approach described in Section 2 (b) is based on a duality relation on graphs that
builds on the source and target matrices associated with the adjacency matrix A. We now show
how this approach can be iterated to compute weighted sums of walks that do not backtrack and
do not contain any cycle of length up to a given k.

We therefore define the matrices pr;k(A)∈Rn×n, whose (i, j) elements count walks of length
r from node i to node j which do not backtrack and do not allow for cycles of length up to k.
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Our aim is to study generalizations of (2.5) to the case of the non-backtracking and up to non-k-
cycling f -subgraph centrality measure xk(t) and f -total communicability measure yk(t), defined
entry-wise for i= 1, . . . , n as

(xk(t))i =

( ∞∑
r=0

crt
rpr;k(A)

)
ii

and (yk(t))i =

( ∞∑
r=0

crt
rpr;k(A)1

)
i

. (5.1)

Remark 5.1. Because a closed walk of length r must contain a cycle of length no more than r, it follows
that the sum defining (xk(t))i in (5.1) may be taken from r= k + 1; the terms from r= 0 to r= k are zero.
So, although the subgraph centrality concept is based on counting closed walks, the non-cycling constraint
rules out all such walks that are deemed to be too short.

Throughout this section, we will adopt the notation (i1, i2, . . . , ir) to denote the walk i1→
i2→ · · ·→ ir of length r − 1 in the original graph and we will denote by i the corresponding
multi-index. We remark that open walks of length ` that do not backtrack and do not include any
cycle are open paths of length `.

The following matrix allows us to perform the iterative computations.

Definition 5.2 (Non-k-cycling matrix). For k= 1, the non-k-cycling matrix, Pk, corresponds to the
adjacency matrix A. For k= 2 the matrix Pk corresponds to the Hashimoto matrix B in (2.2). More
generally, for k > 2 the matrix Pk has as many rows and columns as the number of open paths of length
k − 1 in the original graph. The entry (Pk)ij takes the value 1 if the original graph admits an open path
starting at node i1 and finishing at node jk which superposes with i on its last k − 1 steps and superposes
with j on its first k − 1 steps. Hence, for any two open paths i= (i1, . . . , ik) and j= (j1, . . . , jk) of length
k − 1≥ 1 we have

(Pk)ij =

{
1 if ir = jr−1 for r= 2, . . . , k and i1 6= jk
0 otherwise.

The next result shows how Pk may be constructed. We emphasize that k= 2 corresponds to
the NBTW setting; see also [35,36]

Theorem 5.3. Let W1 =A be the adjacency matrix of a simple graph. Then, for k≥ 2 the non-k-cycling
matrix Pk can be recursively computed as

Pk =Wk −∆k,

whereWk =Rk−1L
T
k−1,∆k =Wk ◦ (WT

k )k−1 and Lk−1 andRk−1 are the source and target matrix of
the graph whose adjacency matrix is Pk−1.

Remark 5.4. We note that the matrices Wk in the statement of Theorem 5.3 correspond to the adjacency
matrices of the kth order De Bruijn graphs of paths in the network; see [46].

Proof. We first argue that the dimension of Wk matches that of Pk. By construction W2

corresponds to the edge-matrix, W , which contains as many rows and columns as the number
of edges in the (directed) graph represented by W1 =A. For k > 2, the matrix Wk has as many
rows and columns as the number of open paths of length k − 1 in the original graph. Moreover,
each row in the matrix Lk−1 (resp., Rk−1) corresponds to a walk of length k − 1, say (i1, . . . , ik),
that neither backtracks nor contains cycles of length up to k − 1. Furthermore, such a row will
contain a 1 in the entry corresponding to the column associated with the non-backtracking and
up to non-(k − 2)-cycling path (i1, . . . , ik−1) (resp, (i2, . . . , ik)). The entries of Wk =Rk−1L

T
k−1

will then equal one if and only if the two paths of length k − 1 corresponding to the row and
column indices under consideration are such that the last k − 2 edges of the first path coincide
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with the first k − 2 of the second path, and thus they form a path of length k. In summary: for any
two paths i= (i1, . . . , ik) and j= (j1, . . . , jk) of length k − 1≥ 1 it holds that

(Wk)ij =

{
1 if ir = jr−1 for r= 2, . . . , k

0 otherwise.

By construction the matrix Wk will contain a one where two paths of length (k − 1) form a cycle
of length k. It is therefore clear that the matrix Pk will be obtained from Wk by removing such
entries. Hence, to complete the proof we must show that ∆k =Wk ◦ (WT

k )k−1 identifies cycles of
length k in the original graph. To do so, note that

((WT
k )k−1)ij =

∑
h(1),h(2),...,h(k−2)

(Wk)jh(1)(Wk)h(1)h(2) · · · (Wk)h(k−2)i.

Considering each term in the product on the right-hand side individually, we see from the
definition ofWk that the first term will equal 1 if and only if jr = h

(1)
r−1 for r= 2, . . . , k. The second

term will equal 1 if and only if h(1)r = h
(2)
r−1 for r= 2, . . . , k, and this also implies the product of

the first two terms will equal 1 if and only if jr = h
(2)
r−2 for r= 3, . . . , k. Proceeding in this way, the

(k − 1)th term will be non zero if and only if h(k−3)r = h
(k−2)
r−1 for r= 2, . . . , k, so that the product

of the first (k − 1) terms will equal 1 when jr = h
(k−2)
r−k+2 for r= k − 1, k. Finally, the last condition

is for the last term to equal one, and this happens when h(k−2)r = ir−1 for r= 2, . . . , k. Therefore,
the product of all terms will equal one if and only if jr = ir−k+1 for r= k, i.e., when jk = i1.
Moreover note that, for two given paths i and j there will be at most one non-zero product in the
summation, since we only need to check that the final node in the first walk coincides with the
first node in the second walk. Therefore,

((WT
k )k−1)ij =

{
1 if jk = i1
0 otherwise.

Exploiting the definition of Wk and (WT
k )k−1 it follows that ∆k will have a 1 in position (i, j) if

and only if

i1 = jk −→ i2 = j1 −→ · · · −→ ik = jk−1 −→ i1 = jk,

i.e., if the two paths form a (directed) cycle of length k in the original graph. This concludes the
proof.

It follows from the definition of Pk that taking a step in its associated graph corresponds to
taking a NBT and up to non-k-cycling walk of length k in the original network; more generally,
taking r consecutive steps within the graph associated to Pk corresponds to taking k + r − 1 steps
in the original graph, while avoiding backtracking and cycles of up to length k.

Using the left and right projectors

Lk−1 =Lk−1 · · ·L1, Rk−1 =Rk−1 · · ·R1, (5.2)

it is immediately clear that the following theorem holds.

Theorem 5.5. For all r= 0, 1, . . . and for any given k≥ 2, we have

LTk−1(P
r
k )Rk−1 = pr+k−1;k(A).

Remark 5.6. When k= 2, then pr;k(A) = pr(A) and Theorem 5.5 reduces to Proposition 2.4 ii).
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In order to obtain useful expressions for xk(t) and yk(t) in (5.1), we first study the generating
function

Φk(t) =

∞∑
r=0

crt
rpr;k(A). (5.3)

Note that, given a certain k, for walks of length r≤ k − 1 it holds that pr;k(A) = pr;r(A), since
no cycles of length k can be formed using less than k edges. Therefore, our problem reduces to
that of computing

Φ̂k(t) =

∞∑
r=k−1

crt
rpr;k(A), (5.4)

which implicitly yields all the pr;k(A) for the interesting case r≥ k.
Our procedure for computing Φ̂k(t) is the following. From Theorem 5.5 it follows that

LTk−1[∂
k−1f(tPk)]Rk−1 =

∞∑
r=0

cr+k−1t
rpr+k−1;k(A) =

∞∑
r=k−1

crt
r−k+1pr;k(A)

and thus

tk−1LTk−1[∂
k−1f(tPk)]Rk−1 = Φ̂k(t).

Hence, having obtained Pk from the construction in Theorem 5.3, we may obtain Φ̂k(t) as follows:
(i) Compute ∂k−1f(tPk); (ii) Project: LTk−1[∂

k−1f(tPk)]Rk−1; (iii) Multiply by tk−1.
Here, in the general case where ∂k−1f(tPk) takes the form of a power series, it may be

approximated by ignoring powers (tPk)
s+1 and higher, for some choice of s. This truncation

corresponds to ignoring non-k-cycling walks of length greater than s in the original network. We
emphasize, however, that in practice, for a specific choice of f , ∂k−1f(tPk) is nothing but a matrix
function [42] of Pk; more efficient techniques than truncating a Taylor series are typically available
to compute a matrix function, or its action on a vector. As they depend on the specific function, a
full discussion is beyond the scope of this paper, and we refer the reader to the monograph [42]
and the references therein.

Note that with this projection approach it is also possible to compute non-k-cycling f -total
communicabilities as follows: (i) Compute tk−1∂k−1f(tPk)1; (ii) Project from the left by LTk−1;
(iii)Add tk−2ck−2pk−2;k(A)1+ · · ·+ t2c2p2(A)1+ tc1A1.

Let us briefly comment on the last step of the approach described above. First, we note
that there is no need to add the term c01, as this addition would just produce a different
representative of the same equivalence class under the relation in (5.1). The terms tc1A1 and
t2c2p2(A)1= t2c2(A

2 −D)1 can be easily built from the data. As for the remaining terms
t`c`p`;k(A)1= t`c`p`;`(A)1 for `= 3, . . . , k − 2, these can be computed during the process of
building the matrix Pk. Indeed, it follows from Theorem 5.5 and (5.2) that p`;`(A)1=LT`−1P`1.

We observe that, although not necessarily tractable for large networks (see Subsection 5 (a)),
the procedure described above is mathematically well defined for any k≥ 2.

We finally describe how to compute the non-backtracking and up to non-k-cycling f -subgraph
centrality measure xk(t) in (5.1). It is readily seen from (5.4) that for all i= 1, 2, . . . , n:

(xk(t))i = c0 + tk−1eTi L
T
k−1[∂

k−1f(tPk)]Rk−1ei

∼ eTi L
T
k−1[∂

k−1f(tPk)]Rk−1ei.

As observed in Theorem 4.3, the behaviour of the f -subgraph communicability is very
different from that of the f -total communicability, in the sense that the former lacks “memory";
indeed, as mentioned in Remark 5.1, the vector xk(t) only considers closed walks in assigning
importance to the nodes in the network, and completely ignores closed walks whose length is
less than k since they have already been removed at previous steps.
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(a) Remarks on Complexity
This method can go on indefinitely, until we have removed cycles of length n (which is the length
of the longest possible cycle). At that point, we have a method to count paths that can be used to
define a path centrality.

Counting paths is #P-complete [47]. Therefore, if we had an algorithm for computing the
pn;k(A) matrices in polynomial (in n) complexity even for k= n, this would imply that P=NP.
Unfortunately for the authors, we do not have such an algorithm.

Observe that the size of the matrix Pk is equal to the number of k-plets of nodes in the input
graph such that there is a path of length k − 1 through them. The worst case scenario is given by
the complete graph with n nodes, for which there are O(nk) such k-plets. Therefore, even if all
the subsequent steps are implemented in a complexity which is linear in the size, for k= n the
method would yield an exponential complexity algorithm.

It should be noted, though, that it is entirely conceivable that for real-life networks, which are
typically extremely sparse, this worst-case growth might not be relevant. This issue is followed
up in Section 6.

(b) Convergence
In this subsection we study the radius of convergence of the power series (5.4). This analysis
will be used in subsection (d), where we study universality properties of the centrality measures
defined via the generating functions.

We begin by showing that the node space and generalized edge space series behave similarly.

Lemma 5.7. For all k, the series Ψk(t) =
∑∞
r=0 crt

rP rk and Φk(t) in (5.3) have the same radius of
convergence.

Proof. Denote by ρΨ and ρΦ the radii of convergence of Ψk(t) and Φk(t), respectively. Let t < ρΨ .
Therefore, by Theorem 5.5

Φk(t) = Φ̃k(t) + tk−1LTk−1Ψk(t)Rk−1, Φ̃k(t) :=

k−2∑
r=0

crt
rpr;k(A).

Hence, the (i, j) entry of the sum Φk(t) is equal to a finite sum plus an infinite sum. The latter is
a linear combination of the entries of the absolutely convergent sum Ψk(t). It follows that Φk(t)
converges, and hence, ρΦ ≥ ρΨ .

Suppose now t > ρΨ and let (r0, s0) be such that (Ψk(t))r0s0 diverges. Moreover let (i0, j0) be
such that (Lk−1)r0i0 = (Rk−1)s0j0 = 1; note that (i0, j0) is uniquely determined because Lk−1
andRk−1 in (5.2) have precisely one nonzero element in each row. Observe that(

Φk(t)− Φ̃k(t)
tk−1

)
i0j0

=
∑
r,s

(Lk−1)ri0(Ψk(t))rs(Rk−1)sj0 ≥ (Ψk(t))r0s0

and Φk(t) diverges. Hence, ρΦ ≤ ρΨ and we conclude that ρΨ = ρΦ.

The next theorem characterizes the radius of convergence of (5.4) (via Lemma 5.7) in terms of
the number of cycles of length greater than k.

Theorem 5.8. For k≥ 2 the spectral radius of the non-k-cycling matrix Pk of a simple and connected
graph G satisfies the following properties:

(i) ρ(Pk)≤ ρ(Pk−1).
(ii) If in G there are no cycles of length k then ρ(Pk) = ρ(Pk−1).

(iii) If in G there are no cycles of length greater than k then ρ(Pk) = 0.
(iv) If in G there is precisely one cycle of length greater than k then ρ(Pk) = 1.
(v) If in G there are at least two cycles of length greater than k then ρ(Pk)> 1.
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Before proving this result, let us point out that any undirected cycle of length k in the original
graph can be regarded as two directed cycles: one where the nodes are visited clockwise and one
where the nodes are visited counterclockwise. It is readily seen that each of these two walks will
also appear in the graphs associated to the matrices P` for all ` < k.

Proof.
(i) Elementwise it holds pr;k(A)≤ pr;k−1(A) for all r, k and thus the statement follows from

Lemma 5.7.
(ii) This is a corollary of Flanders Theorem [37]. Since the graph contains no cycles of length

k, then∆k = 0 and thus the matrices Pk−1 =LTk−1Rk−1 and Pk =Wk =Rk−1L
T
k−1 have

the same spectrum, up to the multiplcity of 0.
(iii) If there are no cycles of length greater than k, then the maximal length of non-k-cycling

walks is finite. It follows that Φk(t) in Lemma 5.7 has only a finite number of nonzero
addends, and hence it converges for all t. Thus, Ψk(t) also converges for all t (and for all
allowed choices of f ) implying ρ(Pk) = 0.

(iv) By the Gelfand formula, for any matrix norm ‖ · ‖,

ρ(Pk) = lim
r→∞

‖P rk ‖
1/r;

see, e.g., [48, Corollary 5.6.14]. Note first that maxi,j |(P rk )ij| ≥ 1, as there are two cycles in
the graph of Pk and hence there exist walks of arbitrary length. We claim that, for r large
enough, there exists a constant c≥ 1, independent of r, such that maxi,j |(P rk )ij| ≤ c. Since
the latter is a matrix norm (not depending on r) of P rk , it follows that ρ(Pk) = 1.
It remains to prove the claim. Take r > n− k, where n is the number of nodes in the
original graph. Then, any walk counted in P rk contains at least one cycle. Only two cycles
of length >k exist in the graph associated with Pk, one corresponding to the cycle in
the original graph being visited clockwise, and one corresponding to it being visited
counterclockwise; clearly it is not possible for a walk to go from one to the other, since
this would imply the existence of either (1) another cycle, longer than the one of length
>k existing in the original graph, or (2) a cycle of length ≤ k in the graph associated
with Pk. Case (1) leads to a contradiction, whilst (2) cannot happen because those walks
have been removed at previous steps. This means that the walks we are considering must
contain a number of consecutive circuits round one of the two cycles. Fix now i and j, two
paths of length k − 1, and consider (P rk )ij. This quantity is bounded above by a number
cij that can be constructed as the number of ways to enter one of the two cycles in the
graph associated to Pk from i, times the number of ways to go from such cycle to j. These
two numbers are finite, and do not depend on r but only on i and j. Taking c=maxi,j cij
completes the argument.

(v) We first consider the case where two of the cycles of length greater than k in the original
graph share at least one vertex, and denote their lengths by `1 ≥ `2 >k. Fix some integer
κ≥ `1 + `2 and let s be the integer satisfying

s(`1 + `2)≤ κ< (s+ 1)(`1 + `2).

We will show that there is at least one entry of Pκk that is bounded below by 2s, so that
then

ρ(Pk)≥ lim
κ→∞

(2s)
1
κ = 2

1
`1+`2 > 1

and hence the conclusion in this case. Let us thus consider two non-(k − 1)-cycling walks
in the original graph that belong to the first cycle. It is easily seen that there are at least(

2s

s

)
=

(2s)!

(s!)2
≥ 2s

non-k-cycling walks of length κ starting from one of these two paths and ending at the
other. Indeed, there are at least that many non-k-cycling walks that go precisely s times
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around the first cycle and s times around the second cycle. Hence, for κ large enough,
at least one entry of Pκk is bounded below by 2s. Hence the conclusion. Suppose now
that no pair of cycles share a vertex, then take any two cycles of length `1 ≥ `2 >k. These
cycles are connected by (at least) one walk, whose length we denote by d. Fix now some
κ≥ 2(`1 + `2 + d) and let s be the unique integer such that

2s(`1 + `2 + d)≤ κ< (2s+ 1)(`1 + `2 + d).

Let us count non-k-cycling walks that (1) start within the first cycle, (2) go precisely 2s

times around the first cycles, 2s times around the second cycle, and s times back and forth
on the bridge, and (3) end somewhere in the first cycle. There are at least

22s−1
(
2s+ 1

s+ 1

)(
2s− 1

s

)
≥ 22s+1

such walks, and this gives a lower bound for at least one element of Pκk . It follows that

ρ(Pk)≥ lim
κ→∞

(22s+1)
1
κ = 2

1
`1+`2+d > 1.

After some further analysis, we will go on to prove Theorem 5.14, which shows that the
converse of item (ii) in Theorem 5.8 also holds. As the case k= 2 (note that “cycles of length
exactly two” are reciprocal edges, which are always present in a non-empty undirected graph)
admits an easier proof, we treat it separately here.

Proposition 5.9. For any non-empty (i.e., there is at least one edge) undirected graph with adjacency
matrix A and Hashimoto matrix B, it holds that ρ(B)< ρ(A).

Proof. If the graph is a forest then ρ(B) = 0< ρ(A). Assume that the graph is not a forest. Then, in
view of the results in [24], we may assume that the graph is connected, and ρ(B) is equal to the
largest finite eigenvalue of the matrix polynomial It2 −At+D − I . Moreover, by [24, Theorems
4.7 and 6.1], the latter is invariant by iteratively removing all the leaves from the graph. On the
other hand, the spectral radius of A can decrease by removing the leaves, but it cannot increase:
hence, there is no loss of generality in assuming the graph has no leaves. We now argue similarly
to [24, Proof of Theorem 4.8] and observe that

ρ(B)2 − αρ(B) + β = 0, α= vTAv, β = vTDv − 1,

where v≥ 0 is such that vTv= 1 and (Iρ(B)2 −Aρ(B) +D − I)v= 0. (Moreover, it is a
consequence of the analysis in [24, Section 9] that ρ(B) is the largest of the two roots of the above
quadratic equation.) Note that β ≥ 1 [24, Proof of Theorem 4.8] and 0≤ α≤ ρ(A). It follows that

2ρ(B) = α+
√
α2 − 4β < 2ρ(A).

It is an immediate consequence of Theorem 5.8 that for different values of k the ranges of the
parameters t for which the generalized Katz centralities based on non-k-cycling walks, obtained
via the procedure described in Section 5, consist of a sequence of nested intervals of the form

(0, ρ(P1)
−1)⊆ (0, ρ(P2)

−1)⊆ (0, ρ(P3)
−1)⊆ · · · ⊆ (0, ρ(Pk)

−1)⊆ · · · .

Moreover, these intervals are strictly included in (0, 1) for all the values of k for which the
(connected) graph contains at least two cycles of length greater than k; they are equal to (0, 1)

for the values of k for which there is precisely one such cycle; and they are equal to (0,∞) for all
values of k such that there are no such cycles.
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(c) Generalized pruning
In this subsection, we show how the spectrum of Pk is invariant under certain pruning operations.
These results are of direct interest, since they quantify the range of allowable values for the
parameter t. They will also be used in the next subsection, where we study limiting behaviour.

Let G = (V, E) be a simple and connected graph, and let k≥ 3 be a fixed path length. For the
goals of this subsection, we partition the set of nodes for such fixed k into two subsets: V =B ∪ C.
Here B is the minimal subset of nodes such that (1) given a fixed cycle-length k≥ 3, all the cycles
of length >k only visit nodes belonging to B and (2) each connected component in the subgraph
spanned by C (if any) is connected to just one node in B (multiple connections to the same node
in B are however allowed). We omit the trivial proof that, given k, such a partition exists and is
unique, although in some cases one may have B= ∅ or C = ∅.

Let us point out that paths that originate in B and end in C cannot be prolonged without
introducing cycles of length≤ k to return to B, as this would imply the existance of a cycle of length
>k outisde B that we can use to cycle back.

Below, we will for simplicity use the verb “prolong” to mean “prolong without introducing
cycles of length ≤ k”, as above. Consider now the following labeling of the open paths of length
(k − 1) in G, i.e., of the row and column indices of the non-k-cycling matrix Pk:

(i) paths in the original graph that start and end in B (and thus never leave B) and that can
be prolonged into arbitrarily long walks;

(ii) paths in the original graph that start and end in B (and thus never leave B) and that
cannot be prolonged into arbitrarily long walks;

(iii) all those paths that do not entirely take place within B and cannot be prolonged into
arbitrarily long walks, thus cannot “return to B”; and finally

(iv) all the other paths: these do not entirely take place within B but can be prolonged into
arbitrarily long walks, and hence will return to B in the limit.

With the described labelling, the matrix Pk can be written as a 4× 4 block matrix; more
specifically

Pk =


Qk(B) ? ? 0

0 N1 ? 0

0 0 N2 0

? ? ? N3

 , (5.5)

where Ni for i= 1, 2, 3 are nilpotent matrices of appropriate size. Indeed, the entries of the (1, 1)

block, i.e., the entries of the matrix Qk(B) in (5.5), are non-zeros if and only if there are two
walks within the subgraph spanned by the nodes in B that can be concatenated and indefinitely
prolonged. The (2, 2) and (3, 3) blocks correspond to paths that are not indefinitely prolongable.
Since it is possible to concatenate two such paths, the matrices in these blocks are not the zero
matrix, in general. However, given the type of walks we are considering, powers of these matrices
are going to be zero for large enoguh powers, since the walks are not indefinitely prolongable.
Thus the matrices in blocks (2, 2) and (3, 3), denoted by N1 and N2, are nilpotent. A similar
reasoning applies to the matrix N3 in the (4, 4) block. Indeed, there are only that many walks that
do not entirely take place within B and that are prolongable to return to this set. For large enough
values of r, all walks will have returned to B and thus Nr

3 = 0, and the matrix is nilpotent.
We now consider the off-diagonal blocks. The (2, 1) block is the zero matrix, since its entries

record whether it is possible to concatenate walks that cannot be indefinitely prolonged with
walks that can be indefinitely prolonged. The (1, 4) and (2, 4) blocks cannot have non-zero entries,
as they would correspond to paths that take place in B entirely and are prolonged via paths that
are not entirely on B but can return to this set. However this would imply the existence of a cycle
outside B.

Blocks (3, 1), (3, 2), and (3, 4) correspond to walks that are not indefinitely prolongable and
therefore cannot be connected, in the graph corresponding to Pk, to any of the paths that are
either taking place entirely within B or that can be prolonged to return to it.
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Remark 5.10. The non-k-cycling matrix associated with the subgraph of G spanned by B, which we denote
by Pk(B), is then

Pk(B) =

[
Qk(B) ?

0 N1

]
. (5.6)

The following theorem is an immediate consequence of the structure of the matrix Pk.

Theorem 5.11. Let G = (V, E) be a simple connected graph and let k be a given cycle length. Let V =

B ∪ C be partitioned as described at the beginning of this section and suppose that the edges are labeled as
described above. Then, the spectrum of Pk, the non-k-cycling matrix corresponding to G, coincides with
that of Qk(B) in (5.6) up to the multiplicity of 0.

Theorem 5.11 shows that, similarly to the NBT case k= 2 considered in [19,24], for k≥ 3 the
network dimension may be lowered by pruning in order to reduce the computational cost of
finding the spectral radius of Pk. The reciprocal of this spectral radius is a strict upper bound for
the range of suitable t values in the non-k-cycling centrality measures.

Remark 5.12. According to whether there are more than one, precisely one, or no cycles of length >k, the
matrix Qk(B) above is, respectively, irreducible, permutation similar to a block diagonal matrix with two
identical irreducible blocks, or empty. Therefore, the study of the spectral radius of Pk can be without loss
of generality reduced to the case where the latter matrix is irreducible.

Lemma 5.13. Let Pk be partitioned as in (5.5). Then, for its right Perron eigenvector w= ρ(Pk)
−1Pkw,

we have the coherent partition, with u,v> 0,

w=


u

0

0

v

 .
That is, wi = 0 if and only if i is a path of length (k − 1) that cannot be indefinitely prolonged.

Proof. We partition the nodes of the graph of the nonnegative matrix Pk into four categories, as
described before Theorem 5.11. Then, by Remark 5.12, we can take wi > 0 if i is an indefinitely
prolongable path that takes place entirely on B, i.e., if i belongs to category (i). From the fact that
for large enough r (in particular, for r≥R where R is the maximum of niloptency indices of N1,
N2 and N3 in (5.5)), we have that

P rk =


Qk(B)r ? ? 0

0 0 0 0

0 0 0 0

? ? ? 0

 , (5.7)

it is clear that wi = 0 if i cannot be indefinitely prolonged (categories (ii) and (iii)). Finally, let i be
a path of category (iv). Then, by Remark 5.12, there exists a threshold R such that for r≥R and
by the eigenequation defining w, we have

wi = ρ(Pk)
−r∑

j

(P rk )ijwj, (5.8)

where the summation is taken over all paths j of length (k − 1) within G. By (5.7), if j is a path
of type (iv), then (P rk )ij = 0. Moreover, if j is a path of either type (ii) or (iii), then wj = 0. Hence,
the summation in (5.8) can be taken over all paths j of category (i) that can be connected to i in
the graph associated with Pk via a path of length r. Suppose wi = 0: then, there is no such path j

of category (i), for no value of r≥R. This contradicts the fact that i can be indefinitely prolonged,
and hence, wi > 0.
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We are now in a position to prove the converse of item (ii) in Theorem 5.8.

Theorem 5.14. If ρ(Pk−1) = ρ(Pk) then there are no cycles of length k.

Proof. We may assume without loss of generality that there are at least two cycles of length >k,
otherwise the statement is a trivial corollary of items (iii), (iv) and (v) in Theorem 5.8. Recall that by
our construction there existLk−1, Rk−1,∆k such that Pk−1 =LTk−1Rk−1, and Pk =Rk−1L

T
k−1 −

∆k and the absence of cycles of length k is tantamount to ∆k = 0.
From the definition of Lk−1 and ∆k it follows that (LTk−1∆k)ij = 1 if the (k − 2)-path i

in G is part of a k-cycle and can be prolonged within this cycle to form the (k − 1)-path j,
while (LTk−1∆k)ij = 0 otherwise. Suppose that ρ(Pk) = ρ(Pk−1) = ρ > 1. Then for a left Perron
eigenvector a of Pk−1 and a right Perron eigenvector w of Pk the following equations hold:

aT (LTk−1Rk−1) = ρaT , (Rk−1L
T
k−1)w=∆kw + ρw.

Combining the equations above we thus see that

aTLTk−1∆kw=
∑
i,j

aiwj = 0, (5.9)

where the sum is taken over all pairs (i, j) such that (LTk−1∆k)ij 6= 0, i.e., the (k − 2)-path i is part
of a k-cycle and can be prolonged within such a cycle to make the (k − 1)-path j. By Remark 5.12,
we can assume that Pk−1 is irreducible, and hence, a> 0. It is worth stressing that in this context
we cannot simultaneosuly make the same assumption on Pk: we only know w≥ 0. We therefore
conclude that either the summation in (5.9) is empty, and hence there is no cycle of length precisely
k, i.e., ∆k = 0, or wj = 0 for all open paths of length k − 1 that are part of a k-cycle. We claim that
the latter is impossible: if there is a cycle of length k in the original graph then there is at least one
such open path, labelled j0 in the graph of Pk, such that wj0 6= 0. This claim proves the statement.

To prove the claim, let us partition the nodes V =B ∪ C for fixed k as described at the beginning
of this subsection. We further partition the (k − 1)-paths in G, i.e., the nodes of the graph of Pk,
into the same four categories described before Theorem 5.11. Suppose that there exists a cycle of
length k in G whose nodes all belong to B. Then there exists a (k − 1)-path j0 that is indefinitely
prolongable and belongs to this cycle. It thus belong to category (i) and hence wj0 > 0 by Lemma
5.13. Suppose now that the cycle of length k contains at least one node in C. From the definition
of B and C it follows that there is at most one node in the cycle that belongs to B, as otherwise we
would have a connected component in the graph spanned by C that is connected to at least two
nodes in B. Hence, there is at least one open path j0 of length (k − 1) that belongs to such a cycle
and does not entirely take place within B, but can be indefinitely prolonged, i.e., is of category
(iv). By Lemma 5.13 we again have wj0 > 0. This proves the claim and hence the theorem.

(d) Non-k-cycling Centralities and Universality Classes
We now extend the results in Theorem 4.3 to the case of non-cycling walks. In summary, we find
that the limiting behaviour for subgraph centrality measures does not depend on the underlying
scalar function f(x). However this is not true for the case of total communicability; here, in the
generic case (iii) in Theorem 5.15, this quantity is seen to depend on the coefficients c1, c2, . . . , ck.
An important corollary of this result is that, unlike in the NBT case k= 2 studied in [19,24], there
can be no universal eigenvector-based non-cycling centrality measure arising as the limit of the
walk-counting version.

Theorem 5.15. Let cr > 0 for all r, and assume that the underlying graph is simple and connected.
Consider the centrality measures xk(t) and yk(t) in (5.1) for k > 2. Suppose that the power series converge
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with radii of convergence tk. Then, in the limit t→ 0 we have

xk(t→ 0)∼

{
1 if there are no cycles of length >k

d(`) otherwise
and yk(t→ 0)∼ d,

where ` > k is the length of the shortest cycle that can be traversed, if any, d(`) is the vector whose ith entry
is the number of cycles of length ` centred at node i, and d is the vector of degrees. Moreover,

(i) if the graph does not contain any cycle of length >k, then tk =∞ and xk(t→ tk)∼ 1 and
yk(t→∞)∼ ph+k−1;k(A)1, where h is the length of the longest path in Pk.

(ii) if the graph contains exactly one cycle of length>k, then xk(t→ tk) only depends on the distance
of each node from the cycle of length >k, whilst yk(t→ tk)∼ 1.

(iii) if the graph contains at least two cycles of length >k, then xk(t→ tk) and yk(t→ tk) exist and
are unique. The limit vector xk(t→ tk) depends on k, but not on the choice of the coefficients cr .
Similarly, the shifted limit vector yk(t→ tk)− (c01+ c1d+ · · ·+ ck−1pk−1;k(A)1) depends
on k, but not on the choice of the coefficients cr .

Proof. The limit t→ 0 can be analyzed straightforwardly, as was the case in Theorem 4.3. For the
limit for t→ tk, there are three cases:

(i) If the graph does not contain any cycle of length >k, then the graph associated with Pk
is a cycle-less digraph, and hence tk =∞ and xk(t→∞)∼ 1. Moreover, if we let h be
the length of the longest directed path in the graph associated with Pk, then y(t→∞)∼
ph+k−1;k(A)1; see Theorem 5.5.

(ii) If the graph contains exactly one cycle of length ` > k, the matrix Pk has 1 as its
eigenvalue, with algebraic and geometric multiplicity two. Indeed, using the same
partition of nodes described in Section 5 (c) and the labeling of paths of length (k − 1)

described in Theorem 5.11, it follows that Λ(Pk) =Λ(Pk(B)) ∪ {0}. It remains to describe
Pk(B). By the remarks in Section 5(c) we can focus on studying Qk(B). It is clear
that anything that touches any shortcut is not indefinitely prolongable. Hence, up
to permutation similarity, Qk(B) =C ⊕ CT where C ∈R`×` is the circulant adjacency
matrix of a directed cycle. It immediately follows that 1 is an eigenvalue of Pk with both
algebraic and geometric multiplicity 2.
The conclusion then follows using a similar reasoning to that of Theorem 4.3 (ii).

(iii) Finally, suppose that the graph contains at least two cycles of length>k. The matrix Pk is
then permutation similar to (5.5), where the matrix Pk(B) 6= 0 in (5.6) is now nonnegative
and irreducible. Therefore, it follows from the Perron–Frobenius theorem that the spectral
radius of Pk(B), and hence of Pk, is a simple positive eigenvalue. The conclusion then
follows from a similar reasoning to that of Theorem 4.3 (i).

6. Tests on Real Data
In this section we record the dimension (number of rows/columns), the number of nonzero
elements, and density of the square matrices P1 =A,P2 =B,P3, P4 for some example networks.
Our aim is to get a feel for the growth of these quantities as a function of the initial network size,
n. We first consider samples from widely used random graph models, where testing over a range
of n is straightforward. We then take real, fixed, network data and work on increasingly large
subgraphs.

We begin by pointing out some relevant analytical results. For any undirected graph G with
n1 := n nodes and m1 :=m (directed) edges, the number of nonzeros in P2 ∈Rn2×n2 , where
n2 =m1, corresponds to twice the number of undirected open paths of length two in G; so,
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Figure 2. Evolution of average dimension, number of nonzeros, and density of the non-k-cycling
matrices Pk for k= 1, 2, 3, 4 corresponding to small-world networks of increasing size n=

100, 200, . . . , 5000.

(see, e.g., [49]) m2 = dT (d− 1), where we recall that d= (di) is the vector of degrees. The non-
backtracking, non-triangulating matrix P3 ∈Rn3×n3 , where n3 =m2, has a number of nonzeros
that corresponds to twice the number of undirected open paths of length three in G, so

n3 =
∑

(i,j)∈E
(di − 1)(dj − 1)− 2 · 3

(
1
6 tr(A

3)
)
= (d− 1)TA(d− 1)− tr(A3),

where the summation was taken over the m1 directed edges in G. We define the density δk of the
matrix Pk for k= 1, 2, 3, . . . as δk =mk/(nk(nk − 1)).

In Figure 2 we display on a semi-logarithmic scale (a) the evolution of the dimension nk of
the matrices Pk for k= 1, 2, 3, 4, (b) the evolution of the number of nonzeros mk, and (c) that
of their densities δk for networks of increasing size built using the smallw function from the
CONTEST toolbox for Matlab [50], with default parameters. The function smallw(n) returns
the adjacency matrix of an independent sample from a class of small world networks [51] with n
nodes. In our tests, we selected n= 100, 200, . . . , 4900, 5000. For each of these we have computed
the dimensions of the matrices Pk for k= 1, 2, 3, 4, the number of nonzeros, and their densities;
we ran this test 100 times and averaged the results. Error bars are also shown in the plots to
indicate the standard errors. The same test was run for networks of increasing size built using
a preferential attachment type of model [52]: pref(n), for the same values of n. Results are
displayed in Figure 3.

For these two widely used models, it can be seen that although the dimension of the matrices
P2, P3, and P4 increases considerably with the size of the original network, they remain very
sparse, thus allowing for fast computations.

For our tests on real world networks, we raise the dimension by constructing increasingly
large, well-connected subsets of a fixed network. To do this, we first compute the Fiedler vector
of the largest connected component. Since the Fiedler vector is an eigenvector of the graph
Laplacian, it is defined up to scalar, nonzero multiples. We retained the sign returned when
the eigenvector was computed using the MATLAB built-in function eigs and we selected the
n mod 1001 nodes corresponding to the largest positive entries in the Fiedler vector. We iterated
this process by adding, at each new step, 100 more nodes to the subgraph using the ordering
of the nodes induced by the Fiedler vector, until we reached the size of the largest connected
component of the original graph. Since close components in the Fiedler are good candidates
for members of the same cluster [53], this process is designed to run through well connected
neighbourhoods. The dimension and density of P1, P2 and P3 are displayed in Figure 4 for the
largest connected component of the collaboration network CA-HEPTH (n= 8638) and in Figure 5

1We selected 100 nodes if n mod 100 = 0.
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Figure 3. Evolution of average dimension, number of nonzeros, and density of the non-k-cycling
matrices Pk for k= 1, 2, 3, 4 corresponding to preferential attachment networks of increasing size
n= 100, 200, . . . , 5000.

0 5000 10000

num. of nodes

10
-3

10
-2

10
-1

d
e
n
s
it
y

10
2

10
4

num. of nodes

10
-4

10
-3

10
-2

10
-1

10
4

10
6

num. of nodes

10
-5

10
-4

10
-3

10
-2

P
3

0 5000 10000
10

2

10
3

10
4

10
5

n
o
n
z
e
ro

s

P
1

10
2

10
4

10
3

10
4

10
5

10
6

P
2

10
4

10
6

10
3

10
4

10
5

10
6

10
7

P
3

Figure 4. Evolution of number of nonzeros and of the density of the matrices P1 =A, P2, and P3

associated with subgraphs of the largest connected component of the network CA-HEPTH.

for the largest connected component of the collaboration network ERDOS02 (n= 5534). Both
networks are available at [54]. On the x-axis we display the dimension of P1, P2 and P3 and
on the y-axis we display the number of nonzeros (top plots) and the density (bottom plots). The
results associated with P1 are plotted in a semi-logarithmic scale, whilst the results for P2 and P3

are displayed in log-log plots. Again, we observe that the non-k-cycling matrices are rather sparse
for these real world networks.
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Figure 5. Evolution of number of nonzeros and of the density of the matrices P1 =A, P2, and P3

associated with subgraphs of the largest connected component of the network ERDOS02.

7. Conclusion
Motivated by the wide application of non-backtracking walks, our aim here was a natural
extension of this concept to the case of non-triangulating, non-squaring and, in general, the
elimination of all cycles. From a practical perspective, we showed that recursively unfolding the
Hashimoto matrix construction provides building blocks for the required generating functions
and non-cycling walk centralities. We also developed a range of theoretical results that
characterise the spectra of the associated matrices and the limiting behaviour of the centrality
measures.

We hope that this new computational and analytical framework will initiate further study in
areas where non-backtracking walks have proved attractive. In particular, for the network science
setting of this work, we envisage progress in a number of directions, including : development of
spectral results, such as the decay of ρ(Pk) in part (i) of Theorem 5.8 as k increases, for specific
graph classes, and their consequences in terms of localization of centrality measures; fast linear
algebra algorithms that can exploit the structure of the matrix-based subproblems, including the
evaluation of general power series in tPk; large-scale tests of the new network science measures
on real-life complex networks of current research interest in science and technology.
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