206 research outputs found

    Rice (\u3ci\u3eOryza\u3c/i\u3e) hemoglobins [version 2; peer review: 2 approved]

    Get PDF
    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice (Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a single copy of the thb gene exist in Oryza sativa var. indica and O. sativa var. japonica, Hb transcripts coexist in rice organs and Hb polypeptides exist in rice embryonic and vegetative organs and in the cytoplasm of differentiating cells. At the structural level, the crystal structure of rice Hb1 has been elucidated, and the structures of the other rice Hbs have been modeled. Kinetic analysis indicated that rice Hb1 and 2, and possibly rice Hb3 and 4, exhibit a very high affinity for O2, whereas rice Hb5 and tHb possibly exhibit a low to moderate affinity for O2. Based on the accumulated information on the properties of rice Hbs and data from the analysis of other plant and non-plant Hbs, it is likely that Hbs play a variety of roles in rice organs, including O2-transport, O2-sensing, NO-scavenging and redox-signaling. From an evolutionary perspective, an outline for the evolution of rice Hbs is available. Rice nshb and thb genes vertically evolved through different lineages, rice nsHbs evolved into clade I and clade II lineages and rice nshbs and thbs evolved under the effect of neutral selection. This review also reveals lacunae in our ability to completely understand rice Hbs. Primary lacunae are the absence of experimental information about the precise functions of rice Hbs, the properties of modeled rice Hbs and the cis-elements and trans-acting factors that regulate the expression of rice hb genes, and the partial understanding of the evolution of rice Hbs

    Cloning and expression analysis of hemoglobin genes from maize (\u3ci\u3eZea mays\u3c/i\u3e ssp. \u3ci\u3emays\u3c/i\u3e) and teosinte (\u3ci\u3eZea mays\u3c/i\u3e ssp. \u3ci\u3eparviglumis\u3c/i\u3e)

    Get PDF
    With the exception of barley and rice, little is known about the existence of hemoglobins (Hbs) in cereals. This work reports the cloning and analysis of hb genes from maize (Zea mays ssp. mays) and teosinte (Zea mays ssp. parviglumis). Coding sequences of maize and teosinte hb genes (hbm and hbt, respectively) are highly similar to each other and are interrupted by three introns located at identical positions as other plant hb genes. Sequences of predicted Hbm and Hbt proteins are identical. The hydropathic profile of Hbm and Hbt is highly similar to that of rice Hb1, suggesting that Hbm, Hbt and Hb1 have the same tertiary structure and biochemical properties. Expression analysis showed that low levels of Hb transcripts, but considerable levels of Hb proteins exist in maize embryonic organs. No Hb transcripts and proteins were detected in teosinte embryonic organs. Low levels of Hb proteins, but no Hb transcripts, were detected in maize and teosinte vegetative organs. These observations suggest that the regulation of hb genes is different in maize and teosinte embryonic organs, and that the expression of hb genes is down- or up-regulated in maize and teosinte, respectively, from germination to vegetative growing

    Cloning and expression analysis of hemoglobin genes from maize (\u3ci\u3eZea mays\u3c/i\u3e ssp. \u3ci\u3emays\u3c/i\u3e) and teosinte (\u3ci\u3eZea mays\u3c/i\u3e ssp. \u3ci\u3eparviglumis\u3c/i\u3e)

    Get PDF
    With the exception of barley and rice, little is known about the existence of hemoglobins (Hbs) in cereals. This work reports the cloning and analysis of hb genes from maize (Zea mays ssp. mays) and teosinte (Zea mays ssp. parviglumis). Coding sequences of maize and teosinte hb genes (hbm and hbt, respectively) are highly similar to each other and are interrupted by three introns located at identical positions as other plant hb genes. Sequences of predicted Hbm and Hbt proteins are identical. The hydropathic profile of Hbm and Hbt is highly similar to that of rice Hb1, suggesting that Hbm, Hbt and Hb1 have the same tertiary structure and biochemical properties. Expression analysis showed that low levels of Hb transcripts, but considerable levels of Hb proteins exist in maize embryonic organs. No Hb transcripts and proteins were detected in teosinte embryonic organs. Low levels of Hb proteins, but no Hb transcripts, were detected in maize and teosinte vegetative organs. These observations suggest that the regulation of hb genes is different in maize and teosinte embryonic organs, and that the expression of hb genes is down- or up-regulated in maize and teosinte, respectively, from germination to vegetative growing

    Damage Detection in Metallic Beams from Dynamic Strain Measurements under Different Load Cases by Using Automatic Clustering and Pattern Recognition Techniques

    No full text
    International audienceIn general, the change in the local strain field or global stiffness caused by damage in a structure is very small and the strain field tends to homogenize very quickly in the field close to the defect. Moreover, other environmental effects can fade the slight changes in the strain field. Only by comparing the response of the structure at several points some information about damage may be unveiled. By means of pattern recognition techniques based on the strain field, this task can be achieved. This is the basis of the strain measurements data-driven models. The main limitation of the strain field pattern recognition techniques lies in the susceptibility of the strain field to change depending on the load conditions. In the case of dynamic loads, this may reflect even a greater limitation. Robust automated techniques are required to manage these limitations. In first instance, automatic clustering techniques are needed so that data can be classified according to the load conditions and secondly, a dimensional reduction technique is needed in order to obtain patterns that often underlie from data. Within the context of this paper, a combination of Local Density-based Simultaneous Two-Level (DS2L-SOM) Clustering based on Self-Organizing Maps (SOM) and Principal Components Analysis (PCA) is proposed in order to firstly, classify load conditions and secondly, perform strain field pattern recognition. The clustering technique is the basis for an Optimal Baseline Selection. An experimental validation of the technique is discussed in this paper, comparing damages of different sizes and positions in an aluminum beam, under a set of combined loads under dynamic conditions. Strains were measured at several points by using Fiber Bragg Gratings

    Cloning and characterization of a caesalpinoid (\u3ci\u3eChamaecrista fasciculata\u3c/i\u3e) hemoglobin: The structural transition from a nonsymbiotic hemoglobin to a leghemoglobin

    Get PDF
    Nonsymbiotic hemoglobins (nsHbs) and leghemoglobins (Lbs) are plant proteins that can reversibly bind O2 and other ligands. The nsHbs are hexacoordinate and appear to modulate cellular concentrations of NO and maintain energy levels under hypoxic conditions. The Lbs are pentacoordinate and facilitate the diffusion of O2 to symbiotic bacteroids within legume root nodules. Multiple lines of evidence suggest that all plant Hbs evolved from a common ancestor and that Lbs originated from nsHbs. However, little is known about the structural intermediates that occurred during the evolution of pentacoordinate Lbs from hexacoordinate nsHbs. We have cloned and characterized a Hb (ppHb) from the root nodules of the ancient caesalpinoid legume Chamaecrista fasciculata. Protein sequence, modeling data, and spectral analysis indicated that the properties of ppHb are intermediate between that of nsHb and Lb, suggesting that ppHb resembles a putative ancestral Lb. Predicted structural changes that appear to have occurred during the nsHb to Lb transition were a compaction of the CD-loop and decreased mobility of the distal His inhibiting its ability to coordinate directly with the heme-Fe, leading to a pentacoordinate protein. Other predicted changes include shortening of the N- and C-termini, compaction of the protein into a globular structure, disappearance of positive charges outside the heme pocket and appearance of negative charges in an area located between the N- and C-termini. A major consequence for some of these changes appears to be the decrease in O2-affinity of ancestral nsHb, which resulted in the origin of the symbiotic function of Lbs

    A Pattern Recognition Approach for Damage Detection and Temperature Compensation in Acousto-Ultrasonics

    No full text
    International audienceThe global trends in the construction of modern structures require the integration of sensors together with data recording and analysis modules so that their integrity can be continuously monitored for safe-life, economic and ecological reasons. This process of measuring and analysing the data from a distributed sensor network all over a structural system in order to quantify its condition is known as structural health monitoring (SHM). Guided ultrasonic wave-based techniques are increasingly being adapted and used in several SHM systems which benefit from built&#8208,in transduction, large inspection ranges, and high sensitivity to small flaws. However, for reliable health monitoring, much information regarding the innate characteristics of the sources and their propagation is essential. Moreover, any SHM system which is expected to transition to field operation must take into account the influence of environmental and operational changes which cause modifications in the stiffness and damping of the structure and consequently modify its dynamic behaviour. On that account, special attention is paid in this paper to the development of an efficient SHM methodology where robust signal processing and pattern recognition techniques are integrated for the correct interpretation of complex ultrasonic waves within the context of damage detection and identification. The methodology is based on an acousto-ultrasonics technique where the discrete wavelet transform is evaluated for feature extraction and selection, linear principal component analysis for data-driven modelling and self-organizing maps for a two-level clustering under the principle of local density. At the end, the methodology is experimentally demonstrated and results show that all the damages were detectable and i

    Nonsymbiotic hemoglobins in rice are synthesized during germination and in differentiating cell types

    Get PDF
    Nonsymbiotic hemoglobins (ns-Hbs) previously have been found in monocots and dicots; however, very little is known about the tissue and cell type localization as well as the physiological function(s) of these oxygen-binding proteins. We report the immunodetection and immunolocalization of ns-Hbs in rice (Oryza sativa L.) by Western blotting and in situ confocal laser scanning techniques. Ns-Hbs were detected in soluble extracts of different tissues from the developing rice seedling by immunoblotting. Levels of ns-Hbs increased in the germinating seed for the first six days following imbibition and remained relatively constant thereafter. In contrast, ns-Hb levels decreased during leaf maturation. Roots and mesocotyls contained detectable, but low levels of ns-Hbs. Split-seed experiments revealed that ns-Hbs are synthesized de novo during seed germination and are expressed in the absence of any signal originating from the embryo. Immunolocalization of ns-Hbs by con- focal microscopy indicated the presence of ns-Hbs primarily in differentiated and differentiating cell types of the developing seedling, such as the aleurone, scutellum, root cap cells, sclerenchyma, and tracheary elements. To our knowledge, this is the first report of the specific cellular localization of these proteins during seedling development

    Damage assessment in a stiffened composite panel using non-linear data-driven modelling and ultrasonic guided waves

    Get PDF
    Structural components made of composite materials are being used more often in aerospace and aeronautic structures due to their well-known properties such as high mass specific stiffness and strength. However, their application also increases the analysis complexity of such structures. Structural health monitoring (SHM) systems for these structures aim to determine the status of the system in real time such that a longer safe life and lower operational costs can be guaranteed. On that account, this paper is concerned with the experimental validation of a structural health monitoring methodology where a damage detection and classification scheme based on an acousto-ultrasonic (AU) approach is applied to a composite panel incorporating stiffening elements using a piezoelectric active sensor network in conjunction with time-frequency multiresolution analysis and non-linear feature extraction. Therefore, structural dynamic responses from the simplified aircraft composite skin panel are collected and signal features are then extracted with a signal processing and data fusion methodology in terms of the wavelet transform technique and hierarchical non-linear principal component analysis. A critical comparison with linear feature extraction methods indicates that the proposed method outperforms the traditional linear methods for the purpose of damage classification. Additionally, results show that all the damages were detectable and classifiable, and the selected features proved capable of separating all damage conditions from the undamaged state.Postprint (published version

    Nonsymbiotic hemoglobins in rice are synthesized during germination and in differentiating cell types

    Get PDF
    Nonsymbiotic hemoglobins (ns-Hbs) previously have been found in monocots and dicots; however, very little is known about the tissue and cell type localization as well as the physiological function(s) of these oxygen-binding proteins. We report the immunodetection and immunolocalization of ns-Hbs in rice (Oryza sativa L.) by Western blotting and in situ confocal laser scanning techniques. Ns-Hbs were detected in soluble extracts of different tissues from the developing rice seedling by immunoblotting. Levels of ns-Hbs increased in the germinating seed for the first six days following imbibition and remained relatively constant thereafter. In contrast, ns-Hb levels decreased during leaf maturation. Roots and mesocotyls contained detectable, but low levels of ns-Hbs. Split-seed experiments revealed that ns-Hbs are synthesized de novo during seed germination and are expressed in the absence of any signal originating from the embryo. Immunolocalization of ns-Hbs by con- focal microscopy indicated the presence of ns-Hbs primarily in differentiated and differentiating cell types of the developing seedling, such as the aleurone, scutellum, root cap cells, sclerenchyma, and tracheary elements. To our knowledge, this is the first report of the specific cellular localization of these proteins during seedling development

    GaN Nanowire Schottky Barrier Diodes

    Get PDF
    A new concept of vertical gallium nitride (GaN) Schottky barrier diode based on nanowire (NW) structures and the principle of dielectric REduced SURface Field (RESURF) is proposed in this paper. High-threading dislocation density in GaN epitaxy grown on foreign substrates has hindered the development and commercialization of vertical GaN power devices. The proposed NW structure, previously explored for LEDs offers an opportunity to reduce defect density and fabricate low cost vertical GaN power devices on silicon (Si) substrates. In this paper, we investigate the static characteristics of high-voltage GaN NW Schottky diodes using 3-D TCAD device simulation. The NW architecture theoretically achieves blocking voltages upward of 700 V with very low specific on-resistance. Two different methods of device fabrication are discussed. Preliminary experimental results are reported on device samples fabricated using one of the proposed methods. The fabricated Schottky diodes exhibit a breakdown voltage of around 100 V and no signs of current collapse. Although more work is needed to further explore the nano-GaN concept, the preliminary results indicate that superior tradeoff between the breakdown voltage and specific on-resistance can be achieved, all on a vertical architecture and a foreign substrate. The proposed NW approach has the potential to deliver low cost reliable GaN power devices, circumventing the limitations of today's high electron mobility transistors (HEMTs) technology and vertical GaN on GaN devices
    corecore