229 research outputs found

    Management of QT prolongation induced by anti-cancer drugs: Target therapy and old agents. Different algorithms for different drugs

    Get PDF
    The side effects of anticancer drugs still play a critical role in survival and quality of life. Although the recent progresses of cancer therapies have significantly improved the prognosis of oncologic patients, side effects of antineoplastic treatments are still responsible for the increased mortality of cancer survivors. Cardiovascular toxicity is the most dangerous adverse effect induced by anticancer therapies. A survey conducted by the National Health and Nutrition Examination, showed that 1807 cancer survivors followed up for seven years: 51% died of cancer and 33% of heart disease (Vejpongsa and Yeh, 2014). Moreover, the risk of cardiotoxicity persists even with the targeted therapy, the newer type of cancer treatment, due to the presence of on-target and off-target effects related to this new class of drugs. The potential cardiovascular toxicity of anticancer agents includes: QT prolongation, arrhythmias, myocardial ischemia, stroke, hypertension (HTN), thromboembolism, left ventricular dysfunction and heart failure (HF). Compared to other cardiovascular disorders, the interest in QT prolongation and its complications is fairly recent. However, oncologists have to deal with it and to evaluate the risk-benefit ratio before starting the treatment or during the same. Electrolyte abnormalities, low levels of serum potassium and several drugs may favour the acquired QT prolongation. Treatment of marked QT prolongation includes cardiac monitoring, caution in the use or suspension of cancer drugs and correction of electrolyte abnormalities (hypokalaemia, hypomagnesaemia, hypocalcaemia). Syndrome of QT prolongation can be associated with potentially fatal cardiac arrhythmias and its treatment consists of intravenous administration of magnesium sulphate and the use of electrical cardioversion

    Polyinosinic-polycytidylic Acid limits tumor outgrowth in a mouse model of metastatic lung cancer.

    Get PDF
    Polyinosinic-polycytidylic acid (poly I:C), a TLR3 ligand, is currently being tested in human clinical trials as an adjuvant to anti-cancer vaccines and in combination with other therapies. However, little is known about its activity in established pulmonary metastasis. The aim of our study was to elucidate the effect of poly I:C (1, 10, or 100 μg/mouse) in a mouse model of B16-F10-induced metastatic lung cancer. Lung tumor growth was arrested after a single administration of poly I:C. This was associated with higher influx of mature dendritic cells (DCs), which drove toward a Th1-like, Th17-like, and cytotoxic immune environment. The interference with IFN type I receptor signaling by means of a specific mAb reversed poly I:C-mediated tumor regression due to lower presence of myeloid DCs, cytotoxic DCs (CD11c(+)CD8(+)), NKT cells, CD8(+) T cells, and Th1-like cytokines. Moreover, the adoptive transfer of poly I:C-activated bone marrow-derived DCs into tumor-bearing mice resulted in activities similar to those of the systemic administration of poly I:C on lung tumor burden. In conclusion, our data prove that poly I:C has potential anti-tumor activity in a mouse model of established pulmonary metastasis. The activation of DCs and the production of IFN type I are responsible for an effective T cytotoxic immune response against metastatic lung cancer progression after poly I:C treatment

    Adoptive immunotherapy with Cl-IB-MECA-treated CD8+T cells reduces melanoma growth in mice

    Get PDF
    Cl-IB-MECA is a selective A3 adenosine receptor agonist, which plays a crucial role in limiting tumor progression. In mice, Cl-IB-MECA administration enhances the anti-tumor T cell-mediated response. However, little is known about the activity of Cl-IB-MECA on CD8+ T cells. The aim of this study was to investigate the effect of ex vivo Cl-IB-MECA treatment of CD8+ T cells, adoptively transferred in melanoma-bearing mice. Adoptive transfer of Cl-IB-MECA-treated CD8+ T cells or a single administration of Cl-IB-MECA (20 ng/mouse) inhibited tumor growth compared with the control group and significantly improved mouse survival. This was associated with the release of Th1-type cytokines and a greater influx of mature Langerin+ dendritic cells (LCs) into the tumor microenvironment. CD8+ T cells treated with Cl-IB-MECA released TNF-α which plays a critical role in the therapeutic efficacy of these cells when injected to mice. Indeed, neutralization of TNF-α by a specific monoclonal Ab significantly blocked the anti-tumor activity of Cl-IB-MECA-treated T cells. This was due to the reduction in levels of cytotoxic cytokines and the presence of fewer LCs. In conclusion, these studies reveal that ex vivo treatment with Cl-IB-MECA improves CD8+ T cell adoptive immunotherapy for melanoma in a TNF-α-dependent manner

    Gastrin and cholecystokinin peptide-based radiopharmaceuticals: an in vivo and in vitro comparison

    Get PDF
    The development of suitable radioligands for targeting CCK-2 receptor expressing tumors, such as medullary thyroid carcinoma, is of great clinical interest. In the search for the best CCK-2R binding peptides, we have synthesized, evaluated and compared the CCK8 peptide (Asp-Tyr-Met-Gly-Trp-Met-Asp-PheNH(2) ) and two gastrin analogs commonly referred to as MG0 (DGlu-Glu(5)-Ala-Tyr-Gly-Trp-Met-Asp-PheNH(2) ) and MG11 (DGlu(1)-Ala-Tyr-Gly-Trp-Met-Asp-PheNH(2) ). The N-terminal portion of the three peptide sequences was derivatized by introducing the DTPAGlu or DOTA chelators to allow radiolobeling with (111) In(III) and (68) Ga(III), respectively. Saturation binding and cellular internalization experiments were performed on A431 cells overexpressing CCK2R (A431-CCK2R). All compounds showed Kd values in the nM range and were internalized with similar rates in CCK2 receptor overexpressing cells. Biodistribution experiments showed higher specific uptake of both MG0-based compounds compared to conjugates containing the CCK8 and MG11 peptide sequences. The higher retention levels of MG0-based peptides were associated with markedly elevated and undesired kidney uptake compared to the other compounds. Current indications suggest that the 5 Glu N-terminal residues while improving peptide stability and receptor-mediated tumor uptake cause unacceptably high kidney retention. Although displaying lower absolute tumor uptake values, the DOTA-coupled CCK8 peptide provided the best tumor to kidney uptake ratio and appears more suitable as lead compound for improvement of radiopharmaceutical properties

    In vitro and in vivo evaluation of In-111-DTPAGlu-G-CCK8 for cholecystokinin-B receptor imaging

    Get PDF
    Regulatory peptides and their analogs are being extensively investigated as radiopharmaceuticals for cancer imaging and therapy. Receptors of the cholecystokinin family have been shown to be overexpressed in different types of neuroendocrine tumors. The purposes of this study were to evaluate the cholecystokinin octapeptide amide (CCK8) peptide tagged with a diethylenetriaminepentaacetic acid derivative (DTPAGlu) and to test whether a 111In-labeled conjugate (111In-DTPAGlu-G-CCK8, a derivative containing the chelating agent DTPAGlu bound through a glycine linker at the N-terminal end of the bioactive peptide CCK8) is suitable for cholecystokinin-B receptor (CCKBR) imaging. Methods: CCK8 was synthesized by solidphase techniques and covalently coupled to DTPAGlu through a glycine linker at its amino terminus. The compound was labeled with 111In. The radiochemical purity and stability of the compound were assessed by chromatographic methods. NIH-3T3 and A431 cells overexpressing CCKBR were used to characterize the in vitro properties of the compound. Nude mice bearing control and CCKBR-overexpressing A431 xenografts were used as an in vivo model. Results: DTPAGlu-G-CCK8 showed rapid and efficient labeling with 111In. The radiolabeled conjugate showed specific binding to both cell lines overexpressing CCKBR. Binding was saturable, with a dissociation constant of 20 nmol/L in both cell systems. Both cell lines showed internalization of the ligand after interaction with the receptor. Biodistribution studies showed rapid localization of 111In-DTPAGlu- G-CCK8 on CCKBR-overexpressing A431 xenografts that was severalfold higher than that on control tumors at all time points tested. Unbound activity showed rapid clearance of over 80% through the kidneys by 30 min after injection. The labeled peptide conjugate was very stable in serum but showed a rapid breakdown after injection. Incubation with kidney homogenates suggested that most breakdown occurred in the kidneys, favoring the clearance of unbound activity. Conclusion: Our findings indicate that the in vitro and in vivo characteristics of 111In-DTPAGlu-G-CCK8 are favorable for CCKBR imaging, as thepeptide shows high-affinity binding to the receptor, is internalized in CCKBR-expressing cells, and shows avid uptake in CCKBR-overexpressing xenografts, with rapid clearance of unbound radioactivity through the kidneys. Furthermore, the ease of synthesis, high labeling efficiency, and chemical stability of DTPAGlu make this chelating moiety an ideal candidate for widespread use in peptide radiolabeling for nuclear medicine applications

    Inhibition of CD73 improves B cell-mediated anti-tumor immunity in a mouse model of melanoma.

    Get PDF
    CD73 is a cell surface enzyme that suppresses T cell-mediated immune responses by producing extracellular adenosine. Growing evidence suggests that targeting CD73 in cancer may be useful for an effective therapeutic outcome. In this study, we demonstrate that administration of a specific CD73 inhibitor, adenosine 5'-(α,β-methylene)diphosphate (APCP), to melanoma-bearing mice induced a significant tumor regression by promoting the release of Th1- and Th17-associated cytokines in the tumor microenvironment. CD8+ T cells were increased in melanoma tissue of APCP-treated mice. Accordingly, in nude mice APCP failed to reduce tumor growth. Importantly, we observed that after APCP administration, the presence of B cells in the melanoma tissue was greater than that observed in control mice. This was associated with production of IgG2b within the melanoma. Depletion of CD20+ B cells partially blocked the anti-tumor effect of APCP and significantly reduced the production of IgG2b induced by APCP, implying a critical role for B cells in the anti-tumor activity of APCP. Our results also suggest that APCP could influence B cell activity to produce IgG through IL-17A, which significantly increased in the tumor tissue of APCP-treated mice. In support of this, we found that in melanoma-bearing mice receiving anti-IL-17A mAb, the anti-tumor effect of APCP was ablated. This correlated with a reduced capacity of APCP-treated mice to mount an effective immune response against melanoma, as neutralization of this cytokine significantly affected both the CD8+ T cell- and B cell-mediated responses. In conclusion, we demonstrate that both T cells and B cells play a pivotal role in the APCP-induced anti-tumor immune response

    Growth and in vivo stresses traced through tumor mechanics enriched with predator-prey cells dynamics

    Get PDF
    Mechanical stress accumulating during growth in solid tumors plays a crucial role in the tumor mechanobiology. Stresses arise as a consequence of the spatially inhomogeneous tissue growth due to the different activity of healthy and cancer cells inhabiting the various districts of the tissue, an additional piling up effect, induced by stress transferring across the scales, contributing to determine the total stress occurring at the macroscopic level. The spatially inhomogeneous growth rates accompany nonuniform and time-propagating stress profiles, which constitute mechanical barriers to nutrient transport and influence the intratumoral interstitial flow, in this way deciding the starved/feeded regions, with direct aftereffects on necrosis, angiogenesis, cancer aggressiveness and overall tumor mass size. Despite their ascertained role in tumor mechanobiology, stresses cannot be directly appraised neither from overall tumor size nor through standard non-invasive measurements. To date, the sole way for qualitatively revealing their presence within solid tumors is ex vivo, by engraving the excised masses and then observing opening between the cut edges. Therefore, to contribute to unveil stresses and their implications in tumors, it is first proposed a multiscale model where Volterra-Lotka (predator/prey–like) equations describing the interspecific (environment-mediated) competitions among healthy and cancer cells are coupled with equations of nonlinear poroelasticity. Then, an experimental study on mice injected subcutaneously with a suspension of two different cancer cell lines (MiaPaCa-2 and MDA.MB231) was conducted to provide experimental evidences that gave qualitative and some new quantitative confirmations of the theoretical model predictions

    Peptide-containing aggregates as selective nanocarriers for therapeutics

    Get PDF
    New nanocarriers are obtained by assembling two amphiphilic monomers: one containing the bioactive peptide CCK8 spaced, by a polydisperse poly(ethylene glycol), from two hydrophobic tails ((C18)2PEG2000CCK8), and the other containing a chelating agent able to give stable radiolabeled indium-111 complexes linked to the same hydrophobic moiety ((C18)2DTPAGlu). The size and shape of the supramolecular aggregates were structurally characterized by dynamic light scattering, small-angle neutron scattering, and cryogenic transmission electronic microscopy. Under the experimental conditions we investigated (pH 7.4 and molar ratio between monomers 30:70), there is the presence of high polydisperse aggregates: rod-like micelles with a radius of 40 Ã… and length >700 Ã…, open bilayer fragments with thickness 65 Ã…, and probably vesicles. The presence of the bioactive peptide well exposed on the external surface of the aggregate allows selective targeting of nanocarriers towards the cholecystokinin receptors overexpressed by the cancerous cells. In vitro binding assays and in vivo biodistribution studies by nuclear medicine experiments using indium-111 are reported. Moreover, preliminary data concerning the drug loading capability of the aggregates and their drug efficiency on the target cells is reported by using the cytotoxic drug doxorubicin. Incubation of receptor-positive and control cells with peptide-containing aggregates filled with doxorubicin shows significantly lower cell survival in receptor-expressing cells relative to the control, for samples incubated in the presence of doxorubicin

    The [Tc(N)(PNP)]2+ metal fragment labeled cholecystokinin-8 (CCK8) peptide for CCK-2 receptors imaging: in vitroand in vivo studies

    Get PDF
    The radiolabeling of the natural octapeptide CCK8, derivatized with a cysteine residue (Cys-Gly-CCK8), by using the metal fragment [99mTc(N)(PNP3)]2+ (PNP3 = N,N-bis(dimethoxypropylphosphinoethyl)methoxyethylamine) is reported. The [99mTc(N)(NS-Cys-Gly-CCK8)(PNP3)]+ complex was obtained according to two methods (one-step or two-step procedure) that gave the desired compound in high yield. The complex is stable in aqueous solution and in phosphate buffer. In vitro challenge experiments with an excess of cysteine and glutathione indicate that no transchelation reactions occur, confirming the high thermodynamic stability and kinetic inertness of this compound. Stability studies carried out in human and mouse serum, as well as in mouse liver homogenates, show that the radiolabeled compound remains intact for prolonged incubation at 37 degrees C. Binding properties give Kd (19.0 +/- 4.6 nmol/l) and Bmax (approximately 10(6) sites/cell) values in A431 cells overexpressing the CCK2-R. In vivo evaluation of the compound shows rapid and specific targeting to CCK2-R, a fourfold higher accumulation compared to nonreceptor expressing tumors
    • …
    corecore