15 research outputs found

    The Reproductive Biology of Strongyloides Nematodes - Sex Determination, Chromatin Diminution and Germline Organization

    Get PDF
    Nematodes of the genus Strongyloides are obligate parasites of various vertebrates (including man) and are thus of economic and medical significance due to their disease-causing ability. Interestingly, the life cycle of Strongyloides nematodes consists of 2 distinct generations, a parasitic one within the vertebrate host and a free-living one outside the host. This free-living generation is almost unique among nematode parasites of vertebrates. Ease of access and methods for cultivating this generation are proving important for understanding the molecular basis of true parasites. For the purpose of my thesis, I have chosen to work on 3 different aspects of the previously poorly understood reproductive biology of Strongyloides, namely:- I. sex determination, with an aim to create a better understanding of sex chromosome evolution within this genus; II. identifying the boundaries and mechanisms of chromatin diminution in the males of S. papillosus; and III. a detailed characterization of the Strongyloides spp. germ line in comparison to the well-studied nematode C. elegans. There are 3 sex determining systems described for Strongyloides species: the XX/X0 system, where females have 2 X-chromosomes but males only one; sex specific chromatin diminution, wherein males are determined by the loss of an internal portion of a chromosome; and an environmental one, with no karyotypic differences between the sexes. I could show that XX/X0 sex determination is ancestral within Strongyloididae, suggesting that chromatin diminution in particular is a derived state. This has given us an understanding of the rapid evolution of sex determining mechanisms and sex chromosomes within this genus by allowing us to correlate the evolutionary life histories of reproduction with chromosome structure. Further, through molecular and genetic tools, I have identified the boundaries on the chromosome where chromatin diminution occurs in the males of S. papillosus and speculated about the cellular mechanisms that might govern this event. In the process, I have contributed significantly in sequencing, annotating and improving the existing S. papillosus genome assembly. Finally, I have characterized the germ line of 3 closely related Strongyloididae members (S. ratti, S. papillosus and P. trichosuri). Specifically, I have studied differential chromatin amplification in some germ nuclei, the absence of stem cell populations and germ cell divisions, differential control of gametogenesis and the differences in germ line chromatin, i.e histone modification patterns. My results reveal striking differences in development, organization and fluid dynamics of the Strongyloididae germ line, both between the different Strongyloididae species and in comparison to C. elegans. This study thus showcases Strongyloides as a promising genus for basic biological and evolutionary research. More importantly it provides the much needed understanding of the reproductive biology of these emerging and medically relevant parasitic nematodes

    Whole Genomes of Chandipura Virus Isolates and Comparative Analysis with Other Rhabdoviruses

    Get PDF
    The Chandipura virus (CHPV) belonging to the Vesiculovirus genus and Rhabdoviridae family, has recently been associated with a number of encephalitis epidemics, with high mortality in children, in different parts of India. No full length genome sequences of CHPV isolates were available in GenBank and little is known about the molecular markers for pathogenesis. In the present study, we provide the complete genomic sequences of four isolates from epidemics during 2003–2007. These sequences along with the deduced sequence of the prototype isolate of 1965 were analysed using phylogeny, motif search, homology modeling and epitope prediction methods. Comparison with other rhaboviruses was also done for functional extrapolations. All CHPV isolates clustered with the Isfahan virus and maintained several functional motifs of other rhabdoviruses. A notable difference with the prototype vesiculovirus, Vesicular Stomatitis Virus was in the L-domain flanking sequences of the M protein that are known to be crucial for interaction with host proteins. With respect to the prototype isolate, significant additional mutations were acquired in the 2003–2007 isolates. Several mutations in G mapped onto probable antigenic sites. A mutation in N mapped onto regions crucial for N-N interaction and a putative T-cell epitope. A mutation in the Casein kinase II phosphorylation site in P may attribute to increased rates of phosphorylation. Gene junction comparison revealed changes in the M-G junction of all the epidemic isolates that may have implications on read-through and gene transcription levels. The study can form the basis for further experimental verification and provide additional insights into the virulence determinants of the CHPV

    The genomic basis of parasitism in the Strongyloides clade of nematodes.

    Get PDF
    Soil-transmitted nematodes, including the Strongyloides genus, cause one of the most prevalent neglected tropical diseases. Here we compare the genomes of four Strongyloides species, including the human pathogen Strongyloides stercoralis, and their close relatives that are facultatively parasitic (Parastrongyloides trichosuri) and free-living (Rhabditophanes sp. KR3021). A significant paralogous expansion of key gene families--families encoding astacin-like and SCP/TAPS proteins--is associated with the evolution of parasitism in this clade. Exploiting the unique Strongyloides life cycle, we compare the transcriptomes of the parasitic and free-living stages and find that these same gene families are upregulated in the parasitic stages, underscoring their role in nematode parasitism

    Convergent evolution of germ granule nucleators: A hypothesis

    No full text
    Germ cells have been considered “the ultimate stem cell” because they alone, during normal development of sexually reproducing organisms, are able to give rise to all organismal cell types. Morphological descriptions of a specialized cytoplasm termed ‘germ plasm’ and associated electron dense ribonucleoprotein (RNP) structures called ‘germ granules’ within germ cells date back as early as the 1800s. Both germ plasm and germ granules are implicated in germ line specification across metazoans. However, at a molecular level, little is currently understood about the molecular mechanisms that assemble these entities in germ cells. The discovery that in some animals, the gene products of a small number of lineage-specific genes initiate the assembly (also termed nucleation) of germ granules and/or germ plasm is the first step towards facilitating a better understanding of these complex biological processes. Here, we draw on research spanning over 100 years that supports the hypothesis that these nucleator genes may have evolved convergently, allowing them to perform analogous roles across animal lineages

    Absence of a Faster-X Effect in Beetles (Tribolium, Coleoptera)

    No full text
    The faster-X effect, namely the rapid evolution of protein-coding genes on the X chromosome, has been widely reported in metazoans. However, the prevalence of this phenomenon across diverse systems and its potential causes remain largely unresolved. Analysis of sex-biased genes may elucidate its possible mechanisms: for example, in systems with X/Y males a more pronounced faster-X effect in male-biased genes than in female-biased or unbiased genes may suggest fixation of recessive beneficial mutations rather than genetic drift. Further, theory predicts that the faster-X effect should be promoted by X chromosome dosage compensation. Here, we asked whether we could detect a faster-X effect in genes of the beetle Tribolium castaneum (and T. freemani orthologs), which has X/Y sex-determination and heterogametic males. Our comparison of protein sequence divergence (dN/dS) on the X chromosome vs. autosomes indicated a rarely observed absence of a faster-X effect in this organism. Further, analyses of sex-biased gene expression revealed that the X chromosome was particularly highly enriched for ovary-biased genes, which evolved slowly. In addition, an evaluation of male X chromosome dosage compensation in the gonads and in non-gonadal somatic tissues indicated a striking lack of compensation in the testis. This under-expression in testis may limit fixation of recessive beneficial X-linked mutations in genes transcribed in these male sex organs. Taken together, these beetles provide an example of the absence of a faster-X effect on protein evolution in a metazoan, that may result from two plausible factors, strong constraint on abundant X-linked ovary-biased genes and a lack of gonadal dosage compensation

    A protocol for feasibility of plasma based GeneXpert platform and Dried Blood Spot (DBS) based Abbott platform for HIV-1 viral load testing among the people living with HIV attending ART centers in India.

    No full text
    BackgroundHIV-1 Viral load (VL) measures efficiency of the antiretroviral therapy (ART) after treatment initiation and helps to diagnose virological failures at an early stage. Current VL assays require sophisticated laboratory facilities. As well as there are other challenges pertaining to insufficient laboratory access, cold-chain management and sample transportation. Hence the number of HIV-1 VL testing laboratories is inadequate in the resource limited settings. The revised national tuberculosis elimination programme (NTEP) in India has developed a vast network of point of care (PoC) testing facilities for diagnosis of tuberculosis and several GeneXpert platforms are functional under this programme. Both the GeneXpert HIV-1 assay and HIV-1 Abbott real time assay are comparable and GeneXpert HIV-1 assay can be used as PoC for HIV-1 Viral load testing. Also, the dried blood spot (DBS) as a sample type has been considered as a good option for HIV-1 VL testing in hard to reach areas. This protocol is therefore developed to assess the feasibility of integrating HIV-1 VL testing among people living with HIV (PLHIV) attending ART centres using the two public health models under the current programme: 1. HIV-1 VL testing using GeneXpert platform and plasma as a sample type, and 2. HIV-1 VL testing using Abbott m2000 platform and DBS as a sample type.MethodsThis ethically approved feasibility study will be implemented at two moderate to high burden ART centres where VL testing facility is not available in the town. Under Model-1, arrangements will be made to carry out VL testing on the adjacent GeneXpert facility and under Model-2, DBS will be prepared on site and couriered to identified viral load testing laboratories. In order to assess the feasibility, data will be collected on pretested questionnaire pertaining to number of samples tested for VL testing, number of samples tested for tuberculosis (TB) diagnosis and the turnaround time (TAT). In-depth interviews will be conducted among the service providers at ART centre and different laboratories for addressing any issues regarding the model implementation.ResultsThe proportion of PLHIV tested for VL at ART centres, total TAT for both models including TAT for sample transportation, sample testing and receipt of results as well as proportion of sample rejections and reasons for the same, correlation coefficient between DBS based and plasma based VL testing will be estimated using various statistical tools.ConclusionIf found promising, these public health approaches will be helpful for the policy makers and program implementation in scaling up HIV-1 viral load testing within India

    Boosting Natural Killer Cell Therapies in Glioblastoma Multiforme Using Supramolecular Cationic Inhibitors of Heat Shock Protein 90

    No full text
    Allogeneic natural killer (aNK) cell adoptive therapy has the potential to dramatically impact clinical outcomes of glioblastoma multiforme (GBM). However, in order to exert therapeutic activity, NK cells require tumor expression of ligands for activating receptors, such as MHC Class I peptide A/B (MICA/B) and ULBPs. Here, we describe the use of a blood–brain barrier (BBB) permissive supramolecular cationic drug vehicle comprising an inhibitor of the chaperone heat shock protein 90 (Hsp90), which sustains a cytotoxic effect on GBM cells, boosts the expression of MICA/B and ULBPs on the residual population, and augments the activity of clinical-grade aNK cells (GTA002). First, we identify Hsp90 mRNA transcription and gain of function as significantly upregulated in GBM compared to other central nervous system tumors. Through a rational chemical design, we optimize a radicicol supramolecular prodrug containing cationic excipients, SCI-101, which displays &amp;gt;2-fold increase in relative BBB penetration compared to less cationic formulations in organoids, in vitro. Using 2D and 3D biological models, we confirm SCI-101 sustains GBM cytotoxicity 72 h after drug removal and induces cell surface MICA/B protein and ULBP mRNA up to 200% in residual tumor cells compared to the naked drug alone without augmenting the shedding of MICA/B, in vitro. Finally, we generate and test the sequential administration of SCI-101 with a clinical aNK cell therapy, GTA002, differentiated and expanded from healthy umbilical cord blood CD34+ hematopoietic stem cells. Using a longitudinal in vitro model, we demonstrate &amp;gt;350% relative cell killing is achieved in SCI-101–treated cell lines compared to vehicle controls. In summary, these data provide a first-of-its-kind BBB-penetrating, long-acting inhibitor of Hsp90 with monotherapy efficacy, which improves response to aNK cells and thus may rapidly alter the treatment paradigm for patients with GBM.</jats:p
    corecore