6 research outputs found

    Interaction of gonadal steroids and growth factors in brain sex differentiation

    Get PDF
    Sex hormones have developmental trophic actions on neurons and glial cells and activational effects in the adult brain. It has been proposed that sex steroids may interact with peptide trophic factors to induce part of their biological effects in the nervous system. The first evidence of such an interaction was provided by Toran-Allerand et al (Brain Research 1980; 184: 517-524), showing that in explant cultures of fetal rodent hypothalamus, estrogen and insulin have synergistic effects on neurite growth, an effect probably mediated by insulin-like growth factor-1 receptors. Recent data indicate that estrogen and insulin-like growth factor-1 signaling pathways interact on hypothalamic neurons to regulate survival and differentiation and that sex steroids interact with a variety of different trophic signals in vivo to regulate neuroendocrine events. These findings suggest that trophic factors may be involved in the genesis of sex differences in the developing brain and in the maintenance of a sexually differentiated brain function in the adult.Biomedical Reviews 1997; 7: 67-74

    Activation and desensitisation of acetylcholine release by zinc at <i>Torpedo</i> nerve terminals

    No full text
    Treatment with 100 or 250 μM ZnCl2 irreversibly blocked neurotransmission in the Torpedo electric organ by inhibiting acetylcholine (ACh) release. In Zn2+-treated tissue, release failure did not result from impairment of Ca2+ entry since stimulation still provoked an accumulation of Ca2+. Also pretreatment of isolated synaptosomes with Zn2+ inhibited to the same extent the release elicited by KCl-evoked depolarisation and the release elicited by using the Ca2+ ionophore A23187. On the other hand, after application of A23187, Zn2+ by itself efficiently triggered ACh release from synaptosomes. This dual effect of Zn2+ was also observed to occur in proteoliposomes equipped with mediatophore (a protein of the presynaptic membrane characterised by its capability to support Ca2+-dependent transmitter release). Hence, Zn2+ mimicked two fundamental actions of Ca2+ on nerve terminals, which are: (1) the immediate activation of release, and (2) a more slowly developing desensitisation of release. Zn2+ was more powerful than Ca2+ for both actions. It is concluded that the dual action of Zn2+ on the mediatophore protein accounts at least in part for its complex effects on neurotransmission

    Estradiol-Induced Synaptic Remodeling of Tyrosine Hydroxylase Immunopositive Neurons in the Rat Arcuate Nucleus

    No full text
    Gonadal steroids induce synaptic plasticity in several areas of the adult nervous system. In the arcuate nucleus of adult female rats, 17β-estradiol triggers synaptic remodeling, resulting in a decrease in the number of inhibitory synaptic inputs, an increase in the number of excitatory synapses, and an enhancement of the frequency of neuronal firing. In the present paper, we studied the specificity of hormonal effects by determining the changes in synaptic connectivity of tyrosine hydroxylase (TH) immunoreactive (IR) neurons in the arcuate nucleus. We combined pre-embedding TH and post-embedding γ-aminobutyric acid (GABA) immunostaining, and performed unbiased stereological measurements in gonadectomized and 17β-estradiol-treated rats. We conclude that the synaptic connectivity of the TH-IR neurons is different from the other, nonlabeled population, and the response to estradiol is not uniform. TH-IR (dopaminergic) arcuate neurons of both male and female rats have more GABAergic (inhibitory) axosomatic inputs than the nondopaminergic population. Our study shows that the effect of 17β-estradiol is sex and cell specific in the sense that not all arcuate neurons are affected by the structural synaptic remodeling. In ovariectomized females hormone treatment decreased the numerical density of GABAergic axosomatic synapses on TH-IR, but not on nondopaminergic, neurons, whereas in orchidectomized males, 17β-estradiol treatment increased inhibitory synapses onto nondopaminergic neurons but did not affect the number of inhibitory terminals onto TH-IR neurons. The hormone-induced plastic changes in synaptic connectivity of TH-IR neurons may serve as the morphological basis for the cyclical regulation of the anterior pituitary
    corecore