132 research outputs found

    Impact of Charge on Traversable Wormhole Solutions in f(R,T)f(R,T) Theory

    Full text link
    This paper examines the effects of charge on traversable wormhole structure in f(R,T)f(R,T) theory. For this purpose, we use the embedding class-I approach to build a wormhole shape function from the static spherically symmetric spacetime. The developed shape function satisfies all the required conditions and connects two asymptotically flat regions of spacetime. We consider different models of this modified theory to examine the traversable wormhole solutions through null energy condition and also check their stable state. We conclude that viable and stable wormhole solutions are obtained under the influence of charge in this gravitational theory.Comment: 21 pages, 5 figure

    Identification and characterisation of putative drug binding sites in human ATP-binding cassette B5 (ABCB5) transporter.

    Full text link
    The human ATP-binding cassette B5 (ABCB5) transporter, a member of the ABC transporter superfamily, is linked to chemoresistance in tumour cells by drug effluxion. However, little is known about its structure and drug-binding sites. In this study, we generated an atomistic model of the full-length human ABCB5 transporter with the highest quality using the X-ray crystal structure of mouse ABCB1 (Pgp1), a close homologue of ABCB5 and a well-studied member of the ABC family. Molecular dynamics simulations were used to validate the atomistic model of ABCB5 and characterise its structural properties in model cell membranes. Molecular docking simulations of known ABCB5 substrates such as taxanes, anthracyclines, camptothecin and etoposide were then used to identify at least three putative binding sites for chemotherapeutic drugs transported by ABCB5. The location of these three binding sites is predicted to overlap with the corresponding binding sites in Pgp1. These findings will serve as the basis for future in vitro studies to validate the nature of the identified substrate-binding sites in the full-length ABCB5 transporter

    Assessment of Heavy Metals in Fodder Crops Leaves Being Raised with Hudiara Drain Water (Punjab-Pakistan)

    Full text link
    The present study was designed with the objectives to assess heavy metals' concentration in Hudiara drain water and investigation of the concentration of heavy metals in different fodder crops grown with this drain water and the determination of heavy metals in milk of cattles grazing these contaminated fodder crops. A survey was conducted and ten different sites were selected along Hudiara drain after entering Lahore. Five water samples and three samples of crops from a each site. The samples were processed, stored and then analyzed for heavy metals like Lead, Cadmium, Chromium, Nickel, Zinc, Iron, Copper and manganese. Lead pollution was not found, whereas, Cadmium, Chromium and Nickel contamination was shown in Hudiara drain water. Similarly, Zinc pollution was not found in Hudiara drain water regarding irrigation and Iron, Copper and Manganese contamination was present in Water samples. Most of the fodder crops samples were contaminated with all heavy metals having levels of heavy metals above the Recommended Concentrations. It is noted that Pb+2 of Hudiara drain and irrigated Pb+2 of fodder crop were in positive correlation and negative correlation between Pb+2 and Cr+2, Ni+2, Cu+2. There is positive correlation between Cd+2 and Cr+2, Fe+2 and also negative correlation between Cd+2 and Pb+2, Cd+2, Ni+2, Zn+2, Cu+2, Mn+2 of fodder crop irrigated with Hudiara drain

    Examining Undergraduate Communication Degree Programs: Mission Statements, Assessment Plans, and Assessment Evaluations

    Get PDF
    One hundred undergraduate communication programs listed in the NCA directory were examined in this investigation. The process involved gathering the university mission statement, departmental mission statement, program assessment plan, and program assessment evaluations. Results demonstrate that 98 institutions utilized mission statements, 81 departments provided mission statements, 18 departments made assessment plans available and the researchers obtained 4 assessment evaluations

    ApoA-I Deficiency Increases Cortical Amyloid Deposition, Cerebral Amyloid Angiopathy, Cortical and Hippocampal Astrogliosis, and Amyloid-associated Astrocyte Reactivity in APP/PS1 Mice

    Get PDF
    Background Alzheimer’s disease (AD) is defined by amyloid beta (Aβ) plaques and neurofibrillary tangles and characterized by neurodegeneration and memory loss. The majority of AD patients also have Aβ deposition in cerebral vessels known as cerebral amyloid angiopathy (CAA), microhemorrhages, and vascular co-morbidities, suggesting that cerebrovascular dysfunction contributes to AD etiology. Promoting cerebrovascular resilience may therefore be a promising therapeutic or preventative strategy for AD. Plasma high-density lipoproteins (HDL) have several vasoprotective functions and are associated with reduced AD risk in some epidemiological studies and with reduced Aβ deposition and Aβ-induced inflammation in 3D engineered human cerebral vessels. In mice, deficiency of apoA-I, the primary protein component of HDL, increases CAA and cognitive dysfunction, whereas overexpression of apoA-I from its native promoter in liver and intestine has the opposite effect and lessens neuroinflammation. Similarly, acute peripheral administration of HDL reduces soluble Aβ pools in the brain and some studies have observed reduced CAA as well. Here, we expand upon the known effects of plasma HDL in mouse models and in vitro 3D artery models to investigate the interaction of amyloid, astrocytes, and HDL on the cerebrovasculature in APP/PS1 mice. Methods APP/PS1 mice deficient or hemizygous for Apoa1 were aged to 12 months. Plasma lipids, amyloid plaque deposition, Aβ protein levels, protein and mRNA markers of neuroinflammation, and astrogliosis were assessed using ELISA, qRT-PCR, and immunofluorescence. Contextual and cued fear conditioning were used to assess behavior. Results In APP/PS1 mice, complete apoA-I deficiency increased total and vascular Aβ deposition in the cortex but not the hippocampus compared to APP/PS1 littermate controls hemizygous for apoA-I. Markers of both general and vascular neuroinflammation, including Il1b mRNA, ICAM-1 protein, PDGFRβ protein, and GFAP protein, were elevated in apoA-I-deficient APP/PS1 mice. Additionally, apoA-I-deficient APP/PS1 mice had elevated levels of vascular-associated ICAM-1 in the cortex and hippocampus and vascular-associated GFAP in the cortex. A striking observation was that astrocytes associated with cerebral vessels laden with Aβ or associated with Aβ plaques showed increased reactivity in APP/PS1 mice lacking apoA-I. No behavioral changes were observed. Conclusions ApoA-I-containing HDL can reduce amyloid pathology and astrocyte reactivity to parenchymal and vascular amyloid in APP/PS1 mice

    New approaches and technical considerations in detecting outlier measurements and trajectories in longitudinal children growth data

    Get PDF
    Background Growth studies rely on longitudinal measurements, typically represented as trajectories. However, anthropometry is prone to errors that can generate outliers. While various methods are available for detecting outlier measurements, a gold standard has yet to be identified, and there is no established method for outlying trajectories. Thus, outlier types and their effects on growth pattern detection still need to be investigated. This work aimed to assess the performance of six methods at detecting different types of outliers, propose two novel methods for outlier trajectory detection and evaluate how outliers affect growth pattern detection. Methods We included 393 healthy infants from The Applied Research Group for Kids (TARGet Kids!) cohort and 1651 children with severe malnutrition from the co-trimoxazole prophylaxis clinical trial. We injected outliers of three types and six intensities and applied four outlier detection methods for measurements (model-based and World Health Organization cut-offs-based) and two for trajectories. We also assessed growth pattern detection before and after outlier injection using time series clustering and latent class mixed models. Error type, intensity, and population affected method performance. Results Model-based outlier detection methods performed best for measurements with precision between 5.72-99.89%, especially for low and moderate error intensities. The clustering-based outlier trajectory method had high precision of 14.93-99.12%. Combining methods improved the detection rate to 21.82% in outlier measurements. Finally, when comparing growth groups with and without outliers, the outliers were shown to alter group membership by 57.9 -79.04%. Conclusions World Health Organization cut-off-based techniques were shown to perform well in few very particular cases (extreme errors of high intensity), while model-based techniques performed well, especially for moderate errors of low intensity. Clustering-based outlier trajectory detection performed exceptionally well across all types and intensities of errors, indicating a potential strategic change in how outliers in growth data are viewed. Finally, the importance of detecting outliers was shown, given its impact on children growth studies, as demonstrated by comparing results of growth group detection

    Impact of a Multifaceted Early Mobility Intervention for Critically Ill Children - the PICU Up! Trial: Study Protocol for a Multicenter Stepped-Wedge Cluster Randomized Controlled Trial

    Get PDF
    BACKGROUND: Over 50% of all critically ill children develop preventable intensive care unit-acquired morbidity. Early and progressive mobility is associated with improved outcomes in critically ill adults including shortened duration of mechanical ventilation and improved muscle strength. However, the clinical effectiveness of early and progressive mobility in the pediatric intensive care unit has never been rigorously studied. The objective of the study is to evaluate if the PICU Up! intervention, delivered in real-world conditions, decreases mechanical ventilation duration (primary outcome) and improves delirium and functional status compared to usual care in critically ill children. Additionally, the study aims to identify factors associated with reliable PICU Up! delivery. METHODS: The PICU Up! trial is a stepped-wedge, cluster-randomized trial of a pragmatic, interprofessional, and multifaceted early mobility intervention (PICU Up!) conducted in 10 pediatric intensive care units (PICUs). The trial\u27s primary outcome is days alive free of mechanical ventilation (through day 21). Secondary outcomes include days alive and delirium- and coma-free (ADCF), days alive and coma-free (ACF), days alive, as well as functional status at the earlier of PICU discharge or day 21. Over a 2-year period, data will be collected on 1,440 PICU patients. The study includes an embedded process evaluation to identify factors associated with reliable PICU Up! delivery. DISCUSSION: This study will examine whether a multifaceted strategy to optimize early mobility affects the duration of mechanical ventilation, delirium incidence, and functional outcomes in critically ill children. This study will provide new and important evidence on ways to optimize short and long-term outcomes for pediatric patients. TRIAL REGISTRATION: ClinicalTrials.gov NCT04989790. Registered on August 4, 2021

    Molecular Modeling Study for Inhibition Mechanism of Human Chymase and Its Application in Inhibitor Design

    Get PDF
    Human chymase catalyzes the hydrolysis of peptide bonds. Three chymase inhibitors with very similar chemical structures but highly different inhibitory profiles towards the hydrolase function of chymase were selected with the aim of elucidating the origin of disparities in their biological activities. As a substrate (angiotensin-I) bound crystal structure is not available, molecular docking was performed to dock the substrate into the active site. Molecular dynamics simulations of chymasecomplexes with inhibitors and substrate were performed to calculate the binding orientation of inhibitors and substrate as well as to characterize conformational changes in the active site. The results elucidate details of the 3D chymase structure as well as the importance of K40 in hydrolase function. Binding mode analysis showed that substitution of a heavier Cl atom at the phenyl ring of most active inhibitor produced a great deal of variation in its orientation causing the phosphinate group to interact strongly with residue K40. Dynamics simulations revealed the conformational variation in region of V36-F41upon substrate and inhibitor binding induced a shift in the location of K40 thus changing its interactions with them. Chymase complexes with the most activecompound and substrate were used for development of a hybrid pharmacophore model which was applied in databases screening. Finally, hits which bound well at the active site, exhibited key interactions and favorable electronic properties were identified as possible inhibitors for chymase. This study not only elucidates inhibitorymechanism of chymase inhibitors but also provides key structural insights which will aid in the rational design of novel potent inhibitors of the enzyme. In general, the strategy applied in the current study could be a promising computational approach and may be generally applicable to drug design for other enzymes

    Molecular Polar Surface Area, Total Solvent Accessible Surface Area (SASA), Heat of Formation, and Gamma-Ray Attenuation Properties of Some Flavonoids

    Full text link
    The chemical and physical characteristics of several flavonoid compounds such as geraniol, thymoquinone, betaine, apigenin, N-acetylcysteine, catechin, l-carnosine, epigallocatachin, and saponarin were examined in this work. Numerous molecular properties of all flavonoid compounds used in this study were calculated using the Calculate Molecular Properties module of Accelrys Discovery Studio v20.1.0.19295.0. These properties included molecular polar surface area, total solvent accessible surface area, and heat of formation. We used the MCNPX general-purpose Monte Carlo code in combination with the Phy-X PSD software to determine gamma-ray interaction parameters such as attenuation coefficients, effective atomic numbers, and buildup factors. The findings indicate that the flavonoids’ elemental compositions have a direct effect on their chemical and physical properties. Additionally, a synergistic interaction of chemical and physical behaviors has been observed. Among the flavonoids studied, saporanin was shown to have the highest polar surface area and solvent accessible surface area, as well as the highest stability. Additionally, saporanin had the strongest gamma-ray attenuation characteristics across a broad photon energy range. It may be inferred that saporanin’s elemental structure enables a synergistic relationship between its chemical and physical characteristics. The findings of this study may contribute to the evaluation of saporanin’s hypoglycemic, antibacterial, and hepatoprotective effects. Copyright © 2022 Tekin, ALMisned, Issa, Kasikci, Arooj, Ene, Al-Buriahi, Konuk and Zakaly.Princess Nourah Bint Abdulrahman University, PNU: PNURSP2022R149The authors express their sincere gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project Number (PNURSP2022R149) and Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

    Bronchoscopy in the investigation of outpatients with hemoptysis at a lung cancer clinic

    Get PDF
    Background: In the investigation of lung cancer, current practice in many healthcare systems would support bronchoscopy regardless of CT findings in patients with hemoptysis. We sought to identify the cause, the diagnostic yield of CT and bronchoscopy and the requirement for bronchoscopy in at risk patients with hemoptysis with a normal CT scan through our rapid access lung cancer clinic (RALC). Methods: Initially, a chart review was performed on all patients with hemoptysis (2011–2012) and thereafter a prospective analysis was performed (2013–2016). Results: Our analysis represents the largest study to date in outpatients with hemoptysis. In our retrospective study, 155 patients reported hemoptysis. Causes were lower respiratory tract infections (RTIs) (47%) and lung cancer (16%). Our prospective study included 182 patients. The causes of hemoptysis were RTIs (50%) and lung cancer (18%). There were no false negative CT-scans for lung cancer. 47/57 present with lung cancer underwent bronchoscopy and 43/47 were positive for lung cancer (92%). Patients with hemoptysis and lung cancer have a higher stage of malignancy with a predominance of squamous cell lung carcinoma. Smoking status, the duration of hemoptysis or description of hemoptysis were not predictive of lung cancer however lung cancer was not identified in patients age <50. Conclusions: One sixth of patients presenting with hemoptysis to our lung cancer clinic had lung cancer. No patient identified with cancer related haemoptysis had a CT negative for lung cancer and a combination of bronchoscopy plus endobronchial ultrasound trans-bronchial needle aspiration (EBUS-TBNA) in those patients with a CT suspicious of lung cancer is 92% sensitive for lung cancer causing hemoptysis
    corecore