779 research outputs found

    Myosin-paramyosin cofilaments: enzymatic interactions with F-actin.

    Full text link

    Ablation of Long-standing Persistent Atrial Fibrillation

    Get PDF
    Atrial fibrillation (AF) is the most commonly encountered arrhythmia in the clinical setting affecting nearly 6 million people in United States and the numbers are only expected to rise as the population continues to age. Broadly it is classified into paroxysmal, persistent and longstanding persistent AF. Electrical, structural and autonomic remodeling are some of the diverse pathophysiological mechanisms that contribute to the persistence of AF. Our review article emphasizes particularly on long standing persistent atrial fibrillation (LSPAF) aspect of the disease which poses a great challenge for electrophysiologists. While pulmonary vein isolation (PVI) has been established as a successful ablation strategy for paroxysmal AF, same cannot be said for LSPAF owing to its long duration, complexity of mechanisms, multiple triggers and substrate sites that are responsible for its perpetuation. The article explains different approaches currently being adopted to achieve freedom from atrial arrhythmias. These mainly include ablation techniques chiefly targeting complex fractionated atrial electrograms (CFAE), rotors, linear lesions, scars and even considering hybrid approaches in a few cases while exploring the role of delayed enhancement magnetic resonance imaging (deMRI) in the pre-procedural planning to improve the overall short and long term outcomes of catheter ablation

    Cardiac Papillary Fibroelastoma: the Need for a Timely Diagnosis

    Get PDF
    Cardiac papillary fibroelastomas (CPFs) are the second most common primary cardiac tumors and the most common cardiac valvular tumors. Although they are histologically benign and usually asymptomatic, CPFs can lead to serious and life-threatening complications like myocardial infarction, stroke, pulmonary embolus, cardiac arrest etc. CPFs represent a rare entity in clinical medicine and literature regarding their management is limited. We report two cases which illustrate such complications arising from undiagnosed CPFs on the aortic valve. We further stress on the importance of identifying CPFs early so that they can be managed appropriately based on recommendations from the available literature

    A FOXO1-induced oncogenic network defines the AML1-ETO preleukemic program

    Get PDF
    Key Points Increased FOXO1 is oncogenic in human CD34+ cells and promotes preleukemia transition. FOXO1 is required by AE preleukemia cells for the activation of a stem cell molecular program.</jats:p

    BMP2 commitment to the osteogenic lineage involves activation of Runx2 by DLX3 and a homeodomain transcriptional network

    No full text
    Several homeodomain (HD) proteins are critical for skeletal patterning and respond directly to BMP2 as an early step in bone formation. RUNX2, the earliest transcription factor proven essential for commitment to osteoblastogenesis, is also expressed in response to BMP2. However, there is a gap in our knowledge of the regulatory cascade from BMP2 signaling to the onset of osteogenesis. Here we show that BMP2 induces DLX3, a homeodomain protein that activates Runx2 gene transcription. Small interfering RNA knockdown studies in osteoblasts validate that DLX3 is a potent regulator of Runx2. Furthermore in Runx2 null cells, DLX3 forced expression suffices to induce transcription of Runx2, osteocalcin, and alkaline phosphatase genes, thus defining DLX3 as an osteogenic regulator independent of RUNX2. Our studies further show regulation of the Runx2 gene by several homeodomain proteins: MSX2 and CDP/cut repress whereas DLX3 and DLX5 activate endogenous Runx2 expression and promoter activity in non-osseous cells and osteoblasts. These HD proteins exhibit distinct temporal expression profiles during osteoblast differentiation as well as selective association with Runx2 chromatin that is related to Runx2 transcriptional activity and recruitment of RNA polymerase II. Runx2 promoter mutagenesis shows that multiple HD elements control expression of Runx2 in relation to the stages of osteoblast maturation. Our studies establish mechanisms for commitment to the osteogenic lineage directly through BMP2 induction of HD proteins DLX3 and DLX5 that activate Runx2, thus delineating a transcriptional regulatory pathway mediating osteoblast differentiation. We propose that the three homeodomain proteins MSX2, DLX3, and DLX5 provide a key series of molecular switches that regulate expression of Runx2 throughout bone formation. <br/

    ToppCluster: a multiple gene list feature analyzer for comparative enrichment clustering and network-based dissection of biological systems

    Get PDF
    ToppCluster is a web server application that leverages a powerful enrichment analysis and underlying data environment for comparative analyses of multiple gene lists. It generates heatmaps or connectivity networks that reveal functional features shared or specific to multiple gene lists. ToppCluster uses hypergeometric tests to obtain list-specific feature enrichment P-values for currently 17 categories of annotations of human-ortholog genes, and provides user-selectable cutoffs and multiple testing correction methods to control false discovery. Each nameable gene list represents a column input to a resulting matrix whose rows are overrepresented features, and individual cells per-list P-values and corresponding genes per feature. ToppCluster provides users with choices of tabular outputs, hierarchical clustering and heatmap generation, or the ability to interactively select features from the functional enrichment matrix to be transformed into XGMML or GEXF network format documents for use in Cytoscape or Gephi applications, respectively. Here, as example, we demonstrate the ability of ToppCluster to enable identification of list-specific phenotypic and regulatory element features (both cis-elements and 3′UTR microRNA binding sites) among tissue-specific gene lists. ToppCluster’s functionalities enable the identification of specialized biological functions and regulatory networks and systems biology-based dissection of biological states. ToppCluster can be accessed freely at http://toppcluster.cchmc.org

    Pyrimidine biosynthesis is not an essential function for trypanosoma brucei bloodstream forms

    Get PDF
    &lt;p&gt;Background: African trypanosomes are capable of both pyrimidine biosynthesis and salvage of preformed pyrimidines from the host, but it is unknown whether either process is essential to the parasite.&lt;/p&gt; &lt;p&gt;Methodology/Principal Findings: Pyrimidine requirements for growth were investigated using strictly pyrimidine-free media, with or without single added pyrimidine sources. Growth rates of wild-type bloodstream form Trypanosoma brucei brucei were unchanged in pyrimidine-free medium. The essentiality of the de novo pyrimidine biosynthesis pathway was studied by knocking out the PYR6-5 locus that produces a fusion product of orotate phosphoribosyltransferase (OPRT) and Orotidine Monophosphate Decarboxylase (OMPDCase). The pyrimidine auxotroph was dependent on a suitable extracellular pyrimidine source. Pyrimidine starvation was rapidly lethal and non-reversible, causing incomplete DNA content in new cells. The phenotype could be rescued by addition of uracil; supplementation with uridine, 2′deoxyuridine, and cytidine allowed a diminished growth rate and density. PYR6-5−/− trypanosomes were more sensitive to pyrimidine antimetabolites and displayed increased uracil transport rates and uridine phosphorylase activity. Pyrimidine auxotrophs were able to infect mice although the infection developed much more slowly than infection with the parental, prototrophic trypanosome line.&lt;/p&gt; &lt;p&gt;Conclusions/Significance: Pyrimidine salvage was not an essential function for bloodstream T. b. brucei. However, trypanosomes lacking de novo pyrimidine biosynthesis are completely dependent on an extracellular pyrimidine source, strongly preferring uracil, and display reduced infectivity. As T. brucei are able to salvage sufficient pyrimidines from the host environment, the pyrimidine biosynthesis pathway is not a viable drug target, although any interruption of pyrimidine supply was lethal.&lt;/p&gt

    H3K9 Methyltransferases and Demethylases Control Lung Tumor-Propagating Cells and Lung Cancer Progression

    Get PDF
    Epigenetic regulators are attractive anticancer targets, but the promise of therapeutic strategies inhibiting some of these factors has not been proven in vivo or taken into account tumor cell heterogeneity. Here we show that the histone methyltransferase G9a, reported to be a therapeutic target in many cancers, is a suppressor of aggressive lung tumor-propagating cells (TPCs). Inhibition of G9a drives lung adenocarcinoma cells towards the TPC phenotype by de-repressing genes which regulate the extracellular matrix. Depletion of G9a during tumorigenesis enriches tumors in TPCs and accelerates disease progression metastasis. Depleting histone demethylases represses G9a-regulated genes and TPC phenotypes. Demethylase inhibition impairs lung adenocarcinoma progression in vivo. Therefore, inhibition of G9a is dangerous in certain cancer contexts, and targeting the histone demethylases is a more suitable approach for lung cancer treatment. Understanding cellular context and specific tumor populations is critical when targeting epigenetic regulators in cancer for future therapeutic development
    corecore