1,883 research outputs found

    Effect of transient pinning on stability of drops sitting on an inclined plane

    Get PDF
    We report on new instabilities of the quasi-static equilibrium of water drops pinned by a hydrophobic inclined substrate. The contact line of a statically pinned drop exhibits three transitions of partial depinning: depinning of the advancing and receding parts of the contact line and depinning of the entire contact line leading to the drop's translational motion. We find a region of parameters where the classical Macdougall-Ockrent-Frenkel approach fails to estimate the critical volume of the statically pinned inclined drop

    Direct Observation of Dynamic Symmetry Breaking above Room Temperature in Methylammonium Lead Iodide Perovskite

    Full text link
    Lead halide perovskites such as methylammonium lead triiodide (MAPI) have outstanding optical and electronic properties for photovoltaic applications, yet a full understanding of how this solution processable material works so well is currently missing. Previous research has revealed that MAPI possesses multiple forms of static disorder regardless of preparation method, which is surprising in light of its excellent performance. Using high energy resolution inelastic X-ray (HERIX) scattering, we measure phonon dispersions in MAPI and find direct evidence for another form of disorder in single crystals: large amplitude anharmonic zone-edge rotational instabilities of the PbI_6 octahedra that persist to room temperature and above, left over from structural phase transitions that take place tens to hundreds of degrees below. Phonon calculations show that the orientations of the methylammonium couple strongly and cooperatively to these modes. The result is a non-centrosymmetric, instantaneous local structure, which we observe in atomic pair distribution function (PDF) measurements. This local symmetry breaking is unobservable by Bragg diffraction, but can explain key material properties such as the structural phase sequence, ultra low thermal transport, and large minority charge carrier lifetimes despite moderate carrier mobility.Comment: 30 pages, 11 figure

    Dvoretzky type theorems for multivariate polynomials and sections of convex bodies

    Full text link
    In this paper we prove the Gromov--Milman conjecture (the Dvoretzky type theorem) for homogeneous polynomials on Rn\mathbb R^n, and improve bounds on the number n(d,k)n(d,k) in the analogous conjecture for odd degrees dd (this case is known as the Birch theorem) and complex polynomials. We also consider a stronger conjecture on the homogeneous polynomial fields in the canonical bundle over real and complex Grassmannians. This conjecture is much stronger and false in general, but it is proved in the cases of d=2d=2 (for kk's of certain type), odd dd, and the complex Grassmannian (for odd and even dd and any kk). Corollaries for the John ellipsoid of projections or sections of a convex body are deduced from the case d=2d=2 of the polynomial field conjecture

    Black Hole Thermodynamics and Lorentz Symmetry

    Full text link
    Recent developments point to a breakdown in the generalized second law of thermodynamics for theories with Lorentz symmetry violation. It appears possible to construct a perpetual motion machine of the second kind in such theories, using a black hole to catalyze the conversion of heat to work. Here we describe and extend the arguments leading to that conclusion. We suggest the inference that local Lorentz symmetry may be an emergent property of the macroscopic world with origins in a microscopic second law of causal horizon thermodynamics.Comment: 4 pages; v2: Version to appear in Foundations of Physics. Potential counterexamples addressed, argument given applying to LV theories where all speeds (or horizons) coincide, and editing for clarit

    The maximum modulus of a trigonometric trinomial

    Full text link
    Let Lambda be a set of three integers and let C_Lambda be the space of 2pi-periodic functions with spectrum in Lambda endowed with the maximum modulus norm. We isolate the maximum modulus points x of trigonometric trinomials T in C_Lambda and prove that x is unique unless |T| has an axis of symmetry. This permits to compute the exposed and the extreme points of the unit ball of C_Lambda, to describe how the maximum modulus of T varies with respect to the arguments of its Fourier coefficients and to compute the norm of unimodular relative Fourier multipliers on C_Lambda. We obtain in particular the Sidon constant of Lambda

    Scaling and super-universality in the coarsening dynamics of the 3d random field Ising model

    Full text link
    We study the coarsening dynamics of the three-dimensional random field Ising model using Monte Carlo numerical simulations. We test the dynamic scaling and super-scaling properties of global and local two-time observables. We treat in parallel the three-dimensional Edward-Anderson spin-glass and we recall results on Lennard-Jones mixtures and colloidal suspensions to highlight the common and different out of equilibrium properties of these glassy systems.Comment: 18 pages, 21 figure

    Multi-component Transparent Conducting Oxides: Progress in Materials Modelling

    Full text link
    Transparent conducting oxides (TCOs) play an essential role in modern optoelectronic devices through their combination of electrical conductivity and optical transparency. We review recent progress in our understanding of multi-component TCOs formed from solid-solutions of ZnO, In2O3, Ga2O3 and Al2O3, with a particular emphasis on the contributions of materials modelling, primarily based on Density Functional Theory. In particular, we highlight three major results from our work: (i) the fundamental principles governing the crystal structures of multi-component oxide structures including (In2O3)(ZnO)n, named IZO, and (In2O3)m(Ga2O3)l(ZnO)n, named IGZO; (ii) the relationship between elemental composition and optical and electrical behaviour, including valence band alignments; (iii) the high-performance of amorphous oxide semiconductors. From these advances, the challenge of the rational design of novel electroceramic materials is discussed.Comment: Part of a themed issue of Journal of Physics: Condensed Matter on "Semiconducting Oxides". In Press (2011

    The Generalized Second Law implies a Quantum Singularity Theorem

    Full text link
    The generalized second law can be used to prove a singularity theorem, by generalizing the notion of a trapped surface to quantum situations. Like Penrose's original singularity theorem, it implies that spacetime is null geodesically incomplete inside black holes, and to the past of spatially infinite Friedmann--Robertson--Walker cosmologies. If space is finite instead, the generalized second law requires that there only be a finite amount of entropy producing processes in the past, unless there is a reversal of the arrow of time. In asymptotically flat spacetime, the generalized second law also rules out traversable wormholes, negative masses, and other forms of faster-than-light travel between asymptotic regions, as well as closed timelike curves. Furthermore it is impossible to form baby universes which eventually become independent of the mother universe, or to restart inflation. Since the semiclassical approximation is used only in regions with low curvature, it is argued that the results may hold in full quantum gravity. An introductory section describes the second law and its time-reverse, in ordinary and generalized thermodynamics, using either the fine-grained or the coarse-grained entropy. (The fine-grained version is used in all results except those relating to the arrow of time.) A proof of the coarse-grained ordinary second law is given.Comment: 46 pages, 8 figures. v2: discussion of global hyperbolicity revised (4.1, 5.2), more comments on AdS. v3: major revisions including change of title. v4: similar to published version, but with corrections to plan of paper (1) and definition of global hyperbolicity (3.2). v5: fixed proof of Thm. 1, changed wording of Thm. 3 & proof of Thm. 4, revised Sec. 5.2, new footnote

    The JAK/STAT3 Pathway Is a Common Inducer of Astrocyte Reactivity in Alzheimer's and Huntington's Diseases.

    Get PDF
    Astrocyte reactivity is a hallmark of neurodegenerative diseases (ND), but its effects on disease outcomes remain highly debated. Elucidation of the signaling cascades inducing reactivity in astrocytes during ND would help characterize the function of these cells and identify novel molecular targets to modulate disease progression. The Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) pathway is associated with reactive astrocytes in models of acute injury, but it is unknown whether this pathway is directly responsible for astrocyte reactivity in progressive pathological conditions such as ND. In this study, we examined whether the JAK/STAT3 pathway promotes astrocyte reactivity in several animal models of ND. The JAK/STAT3 pathway was activated in reactive astrocytes in two transgenic mouse models of Alzheimer's disease and in a mouse and a nonhuman primate lentiviral vector-based model of Huntington's disease (HD). To determine whether this cascade was instrumental for astrocyte reactivity, we used a lentiviral vector that specifically targets astrocytes in vivo to overexpress the endogenous inhibitor of the JAK/STAT3 pathway [suppressor of cytokine signaling 3 (SOCS3)]. SOCS3 significantly inhibited this pathway in astrocytes, prevented astrocyte reactivity, and decreased microglial activation in models of both diseases. Inhibition of the JAK/STAT3 pathway within reactive astrocytes also increased the number of huntingtin aggregates, a neuropathological hallmark of HD, but did not influence neuronal death. Our data demonstrate that the JAK/STAT3 pathway is a common mediator of astrocyte reactivity that is highly conserved between disease states, species, and brain regions. This universal signaling cascade represents a potent target to study the role of reactive astrocytes in ND

    Gain in a quantum wire laser of high uniformity

    Full text link
    A multi-quantum wire laser operating in the 1-D ground state has been achieved in a very high uniformity structure that shows free exciton emission with unprecedented narrow width and low lasing threshold. Under optical pumping the spontaneous emission evolves from a sharp free exciton peak to a red-shifted broad band. The lasing photon energy occurs about 5 meV below the free exciton. The observed shift excludes free excitons in lasing and our results show that Coulomb interactions in the 1-D electron-hole system shift the spontaneous emission and play significant roles in laser gain.Comment: 4 pages, 4 figures, prepared by RevTe
    corecore