60 research outputs found

    Dark matter search results from the complete exposure of the PICO-60 C3F8 bubble chamber

    Full text link
    [EN] Final results are reported from operation of the PICO-60 C3F8 dark matter detector, a bubble chamber filled with 52 kg of C3F8 located in the SNOLAB underground laboratory. The chamber was operated at thermodynamic thresholds as low as 1.2 keV without loss of stability. A new blind 1404-kg-day exposure at 2.45 keV threshold was acquired with approximately the same expected total background rate as the previous 1167-kg-day exposure at 3.3 keV. This increased exposure is enabled in part by a new optical tracking analysis to better identify events near detector walls, permitting a larger fiducial volume. These results set the most stringent direct-detection constraint to date on the weakly interacting massive particle (WIMP)-proton spin-dependent cross section at 3.2 x 10(-41) cm(2) for a 25 GeV WIMP, improving on previous PICO results for 3-5 GeV WIMPs by an order of magnitude.The PICO Collaboration wishes to thank SNOLAB and its staff for support through underground space, logistical and technical services. SNOLAB operations are supported by the Canada Foundation for Innovation and the Province of Ontario Ministry of Research and Innovation, with underground access provided by Vale at the Creighton mine site. We are grateful to Genevieve Belanger and Alexander Pukhov of the Universit e de Savoie for their useful correspondence regarding the interpretation of PICO results. We wish to acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canada Foundation for Innovation (CFI) for funding. We acknowledge the support from the National Science Foundation (NSF) (Grants No. 0919526, No. 1506337, No. 1242637, No. 1205987, and No. 1806722). We acknowledge that this work is supported by the U.S. Department of Energy (DOE) Office of Science, Office of High Energy Physics (under Award No. DE-SC-0012161), by the DOE Office of Science Graduate Student Research (SCGSR) award, by DGAPA-UNAM (PAPIIT No. IA100118) and Consejo Nacional de Ciencia y Tecnologia (CONACyT, Mexico, Grants No. 252167 and No. A1-S-8960), by the Department of Atomic Energy (DAE), Government of India, under the Centre for AstroParticle Physics II project (CAPP-II) at the Saha Institute of Nuclear Physics (SINP), European Regional Development FundProject "Engineering applications of microworld physics" (No. CZ. 02.1.01/0.0/0.0/16_019/0000766), and the Spanish (Ministry of Science, Innovation and Universities) Ministerio de Ciencia, Innovacion y Universidades (Red Consolider MultiDark, FPA2017-90566-REDC). This work is partially supported by the Kavli Institute for Cosmological Physics at the University of Chicago through NSF Grant No. 1125897, and an endowment from the Kavli Foundation and its founder Fred Kavli. We also wish to acknowledge the support from Fermi National Accelerator Laboratory under Contract No. DE-AC02-07CH11359, and from Pacific Northwest National Laboratory, which is operated by Battelle for the U.S. Department of Energy under Contract No. DE-AC05-76RL01830. We also thank Compute Canada (www.computecanada.ca) and the Centre for Advanced Computing, ACENET, Calcul Quebec, Compute Ontario and WestGrid for computational support.Amole, C.; Ardid Ramírez, M.; Arnquist, I.; Asner, DM.; Baxter, D.; Behnke, E.; Bressler, M.... (2019). Dark matter search results from the complete exposure of the PICO-60 C3F8 bubble chamber. Physical Review D: covering particles, fields, gravitation, and cosmology. 100(2):1-9. https://doi.org/10.1103/PhysRevD.100.022001191002Olive, K. A. (2014). Review of Particle Physics. Chinese Physics C, 38(9), 090001. doi:10.1088/1674-1137/38/9/090001Komatsu, E., Dunkley, J., Nolta, M. R., Bennett, C. L., Gold, B., Hinshaw, G., … Wright, E. L. (2009). FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION. The Astrophysical Journal Supplement Series, 180(2), 330-376. doi:10.1088/0067-0049/180/2/330Jungman, G., Kamionkowski, M., & Griest, K. (1996). Supersymmetric dark matter. Physics Reports, 267(5-6), 195-373. doi:10.1016/0370-1573(95)00058-5Goodman, M. W., & Witten, E. (1985). Detectability of certain dark-matter candidates. Physical Review D, 31(12), 3059-3063. doi:10.1103/physrevd.31.3059Amole, C., Ardid, M., Arnquist, I. J., Asner, D. M., Baxter, D., Behnke, E., … Campion, P. (2017). Dark Matter Search Results from the PICO−60 C3F8 Bubble Chamber. Physical Review Letters, 118(25). doi:10.1103/physrevlett.118.251301Amole, C., Ardid, M., Asner, D. M., Baxter, D., Behnke, E., Bhattacharjee, P., … Broemmelsiek, D. (2016). Dark matter search results from the PICO-60CF3Ibubble chamber. Physical Review D, 93(5). doi:10.1103/physrevd.93.052014McLure, I. A., Soares, V. A. M., & Edmonds, B. (1982). Surface tension of perfluoropropane, perfluoro-n-butane, perfluoro-n-hexane, perfluoro-octane, perfluorotributylamine and n-pentane. Application of the principle of corresponding states to the surface tension of perfluoroalkanes. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 78(7), 2251. doi:10.1039/f19827802251Baxter, D., Chen, C. J., Crisler, M., Cwiok, T., Dahl, C. E., Grimsted, A., … Zhang, J. (2017). First Demonstration of a Scintillating Xenon Bubble Chamber for Detecting Dark Matter and Coherent Elastic Neutrino-Nucleus Scattering. Physical Review Letters, 118(23). doi:10.1103/physrevlett.118.231301Aubin, F., Auger, M., Genest, M.-H., Giroux, G., Gornea, R., Faust, R., … Storey, C. (2008). Discrimination of nuclear recoils from alpha particles with superheated liquids. New Journal of Physics, 10(10), 103017. doi:10.1088/1367-2630/10/10/103017Amole, C., Ardid, M., Asner, D. M., Baxter, D., Behnke, E., Bhattacharjee, P., … Broemmelsiek, D. (2015). Dark Matter Search Results from the PICO-2LC3F8Bubble Chamber. Physical Review Letters, 114(23). doi:10.1103/physrevlett.114.231302Pozzi, S. A., Padovani, E., & Marseguerra, M. (2003). MCNP-PoliMi: a Monte-Carlo code for correlation measurements. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 513(3), 550-558. doi:10.1016/j.nima.2003.06.012Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., … Barrand, G. (2003). Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250-303. doi:10.1016/s0168-9002(03)01368-8Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce Dubois, P., Asai, M., … Chytracek, R. (2006). Geant4 developments and applications. IEEE Transactions on Nuclear Science, 53(1), 270-278. doi:10.1109/tns.2006.869826Robinson, A. E. (2014). New libraries for simulating neutron scattering in dark matter detector calibrations. Physical Review C, 89(3). doi:10.1103/physrevc.89.032801Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. (2013). emcee: The MCMC Hammer. Publications of the Astronomical Society of the Pacific, 125(925), 306-312. doi:10.1086/670067Amaudruz, P.-A., Baldwin, M., Batygov, M., Beltran, B., Bina, C. E., Bishop, D., … Broerman, B. (2018). First Results from the DEAP-3600 Dark Matter Search with Argon at SNOLAB. Physical Review Letters, 121(7). doi:10.1103/physrevlett.121.071801Cowan, G., Cranmer, K., Gross, E., & Vitells, O. (2011). Asymptotic formulae for likelihood-based tests of new physics. The European Physical Journal C, 71(2). doi:10.1140/epjc/s10052-011-1554-0Lewin, J. D., & Smith, P. F. (1996). Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil. Astroparticle Physics, 6(1), 87-112. doi:10.1016/s0927-6505(96)00047-3Fitzpatrick, A. L., Haxton, W., Katz, E., Lubbers, N., & Xu, Y. (2013). The effective field theory of dark matter direct detection. Journal of Cosmology and Astroparticle Physics, 2013(02), 004-004. doi:10.1088/1475-7516/2013/02/004Anand, N., Fitzpatrick, A. L., & Haxton, W. C. (2014). Weakly interacting massive particle-nucleus elastic scattering response. Physical Review C, 89(6). doi:10.1103/physrevc.89.065501Gresham, M. I., & Zurek, K. M. (2014). Effect of nuclear response functions in dark matter direct detection. Physical Review D, 89(12). doi:10.1103/physrevd.89.123521Gluscevic, V., Gresham, M. I., McDermott, S. D., Peter, A. H. G., & Zurek, K. M. (2015). Identifying the theory of dark matter with direct detection. Journal of Cosmology and Astroparticle Physics, 2015(12), 057-057. doi:10.1088/1475-7516/2015/12/057Amole, C., Ardid, M., Arnquist, I. J., Asner, D. M., Baxter, D., Behnke, E., … Brice, S. J. (2016). Improved dark matter search results from PICO-2L Run 2. Physical Review D, 93(6). doi:10.1103/physrevd.93.061101Behnke, E., Besnier, M., Bhattacharjee, P., Dai, X., Das, M., Davour, A., … Zacek, V. (2017). Final results of the PICASSO dark matter search experiment. Astroparticle Physics, 90, 85-92. doi:10.1016/j.astropartphys.2017.02.005Felizardo, M., Girard, T. A., Morlat, T., Fernandes, A. C., Ramos, A. R., Marques, J. G., … Marques, R. (2014). The SIMPLE Phase II dark matter search. Physical Review D, 89(7). doi:10.1103/physrevd.89.072013Aprile, E., Aalbers, J., Agostini, F., Alfonsi, M., Althueser, L., Amaro, F. D., … Baudis, L. (2019). Constraining the Spin-Dependent WIMP-Nucleon Cross Sections with XENON1T. Physical Review Letters, 122(14). doi:10.1103/physrevlett.122.141301Fu, C., Cui, X., Zhou, X., Chen, X., Chen, Y., … Fang, D. (2017). Spin-Dependent Weakly-Interacting-Massive-Particle–Nucleon Cross Section Limits from First Data of PandaX-II Experiment. Physical Review Letters, 118(7). doi:10.1103/physrevlett.118.071301Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., … Ansseau, I. (2017). Search for annihilating dark matter in the Sun with 3 years of IceCube data. The European Physical Journal C, 77(3). doi:10.1140/epjc/s10052-017-4689-9Tanaka, T., Abe, K., Hayato, Y., Iida, T., Kameda, J., Koshio, Y., … Nakahata, M. (2011). AN INDIRECT SEARCH FOR WEAKLY INTERACTING MASSIVE PARTICLES IN THE SUN USING 3109.6 DAYS OF UPWARD-GOING MUONS IN SUPER-KAMIOKANDE. The Astrophysical Journal, 742(2), 78. doi:10.1088/0004-637x/742/2/78Choi, K., Abe, K., Haga, Y., Hayato, Y., Iyogi, K., Kameda, J., … Nakahata, M. (2015). Search for Neutrinos from Annihilation of Captured Low-Mass Dark Matter Particles in the Sun by Super-Kamiokande. Physical Review Letters, 114(14). doi:10.1103/physrevlett.114.141301Akerib, D. S., Araújo, H. M., Bai, X., Bailey, A. J., Balajthy, J., Beltrame, P., … Boulton, E. M. (2016). Results on the Spin-Dependent Scattering of Weakly Interacting Massive Particles on Nucleons from the Run 3 Data of the LUX Experiment. Physical Review Letters, 116(16). doi:10.1103/physrevlett.116.161302Adrián-Martínez, S., Albert, A., André, M., Anton, G., Ardid, M., Aubert, J.-J., … Basa, S. (2016). Limits on dark matter annihilation in the sun using the ANTARES neutrino telescope. Physics Letters B, 759, 69-74. doi:10.1016/j.physletb.2016.05.019Adrián-Martínez, S., Albert, A., André, M., Anton, G., Ardid, M., Aubert, J.-J., … Basa, S. (2016). A search for Secluded Dark Matter in the Sun with the ANTARES neutrino telescope. Journal of Cosmology and Astroparticle Physics, 2016(05), 016-016. doi:10.1088/1475-7516/2016/05/016Agnes, P., Albuquerque, I. F. M., Alexander, T., Alton, A. K., Araujo, G. R., Asner, D. M., … Batignani, G. (2018). Low-Mass Dark Matter Search with the DarkSide-50 Experiment. Physical Review Letters, 121(8). doi:10.1103/physrevlett.121.081307Aprile, E., Aalbers, J., Agostini, F., Alfonsi, M., Althueser, L., Amaro, F. D., … Bauermeister, B. (2018). Dark Matter Search Results from a One Ton-Year Exposure of XENON1T. Physical Review Letters, 121(11). doi:10.1103/physrevlett.121.111302Akerib, D. S., Alsum, S., Araújo, H. M., Bai, X., Bailey, A. J., Balajthy, J., … Biesiadzinski, T. P. (2017). Results from a Search for Dark Matter in the Complete LUX Exposure. Physical Review Letters, 118(2). doi:10.1103/physrevlett.118.021303Tan, A., Xiao, M., Cui, X., Chen, X., Chen, Y., Fang, D., … Gong, H. (2016). Dark Matter Results from First 98.7 Days of Data from the PandaX-II Experiment. Physical Review Letters, 117(12). doi:10.1103/physrevlett.117.121303Agnese, R., Anderson, A. J., Aramaki, T., Asai, M., Baker, W., Balakishiyeva, D., … Billard, J. (2016). New Results from the Search for Low-Mass Weakly Interacting Massive Particles with the CDMS Low Ionization Threshold Experiment. Physical Review Letters, 116(7). doi:10.1103/physrevlett.116.071301Angloher, G., Bento, A., Bucci, C., Canonica, L., Defay, X., Erb, A., … Zöller, A. (2016). Results on light dark matter particles with a low-threshold CRESST-II detector. The European Physical Journal C, 76(1). doi:10.1140/epjc/s10052-016-3877-3Aprile, E., Aalbers, J., Agostini, F., Alfonsi, M., Amaro, F. D., Anthony, M., … Bauermeister, B. (2016). XENON100 dark matter results from a combination of 477 live days. Physical Review D, 94(12). doi:10.1103/physrevd.94.122001Agnese, R., Anderson, A. J., Asai, M., Balakishiyeva, D., Basu Thakur, R., Bauer, D. A., … Bowles, M. A. (2014). Search for Low-Mass Weakly Interacting Massive Particles with SuperCDMS. Physical Review Letters, 112(24). doi:10.1103/physrevlett.112.241302Agnese, R., Anderson, A. J., Asai, M., Balakishiyeva, D., Barker, D., Basu Thakur, R., … Bowles, M. A. (2015). Improved WIMP-search reach of the CDMS II germanium data. Physical Review D, 92(7). doi:10.1103/physrevd.92.072003Hehn, L., Armengaud, E., Arnaud, Q., Augier, C., Benoît, A., Bergé, L., … Yakushev, E. (2016). Improved EDELWEISS-III sensitivity for low-mass WIMPs using a profile likelihood approach. The European Physical Journal C, 76(10). doi:10.1140/epjc/s10052-016-4388-

    Demonstration of event position reconstruction based on diffusion in the NEXT-white detector

    Get PDF
    [EN] Noble element time projection chambers are a leading technology for rare event detection in physics, such as for dark matter and neutrinoless double beta decay searches. Time projection chambers typically assign event position in the drift direction using the relative timing of prompt scintillation and delayed charge collection signals, allowing for reconstruction of an absolute position in the drift direction. In this paper, alternate methods for assigning event drift distance via quantification of electron diffusion in a pure high pressure xenon gas time projection chamber are explored. Data from the NEXT-White detector demonstrate the ability to achieve good position assignment accuracy for both high- and low-energy events. Using point-like energy deposits from Kr-83m calibration electron captures (E similar to 45 keV), the position of origin of low-energy events is determined to 2 cm precision with bias = 1.5 MeV), from radiogenic electrons, yielding a precision of 3 cm on the event barycenter. The precision achieved with these methods indicates the feasibility energy calibrations of better than 1% FWHM at Q(beta beta) in pure xenon, as well as the potential for event fiducialization in large future detectors using an alternate method that does not rely on primary scintillation.The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under Grant Agreement No. 951281-BOLD; the European Union's Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under Grant Agreement No. 957202-HIDDEN; the MCIN/AEI of Spain and ERDF A way of making Europe under grants PID2021-125475NB and the Severo Ochoa Program grant CEX2018-000867-S; the Generalitat Valenciana of Spain under grants PROMETEO/2021/087 and CIDEGENT/2019/049; the Department of Education of the Basque Government of Spain under the predoctoral training program non-doctoral research personnel; the Spanish la Caixa Foundation (ID 100010434) under fellowship code LCF/BQ/PI22/11910019; the Portuguese FCT under project UID/FIS/04559/2020 to fund the activities of LIBPhys-UC; the Israel Science Foundation (ISF) under grant 1223/21; the Pazy Foundation (Israel) under grants 310/22, 315/19 and 465; the US Department of Energy under contracts number DE-AC02-06CH11357 (Argonne National Laboratory), DE-AC02-07CH11359 (Fermi National Accelerator Laboratory), DE-FG02-13ER42020 (Texas A &M), DE-SC0019054 (Texas Arlington) and DE-SC0019223 (Texas Arlington); the US National Science Foundation under award number NSF CHE 2004111; the Robert A Welch Foundation under award number Y-2031-20200401.Haefner, J.; Navarro, K.; Guenette, R.; Jones, B.; Tripathi, A.; Adams, C.; Almazán, H.... (2024). Demonstration of event position reconstruction based on diffusion in the NEXT-white detector. The European Physical Journal C. 84(5). https://doi.org/10.1140/epjc/s10052-024-12865-984

    Radiogenic backgrounds in the NEXT double beta decay experiment

    Full text link
    [EN] Natural radioactivity represents one of the main backgrounds in the search for neutrinoless double beta decay. Within the NEXT physics program, the radioactivity- induced backgrounds are measured with the NEXT-White detector. Data from 37.9 days of low-background operations at the Laboratorio Subterraneo de Canfranc with xenon depleted in Xe-136 are analyzed to derive a total background rate of (0.84 +/- 0.02) mHz above 1000 keV. The comparison of data samples with and without the use of the radon abatement system demonstrates that the contribution of airborne-Rn is negligible. A radiogenic background model is built upon the extensive radiopurity screening campaign conducted by the NEXT collaboration. A spectral fit to this model yields the specific contributions of Co-60, K-40, Bi-214 and Tl-208 to the total background rate, as well as their location in the detector volumes. The results are used to evaluate the impact of the radiogenic backgrounds in the double beta decay analyses, after the application of topological cuts that reduce the total rate to (0.25 +/- 0.01) mHz. Based on the best-fit background model, the NEXT-White median sensitivity to the two-neutrino double beta decay is found to be 3.5 sigma after 1 year of data taking. The background measurement in a Q(beta beta)+/- 100 keV energy window validates the best-fit background model also for the neutrinoless double beta decay search with NEXT-100. Only one event is found, while the model expectation is (0.75 +/- 0.12) events.The NEXT collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the European Union's Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Sklodowska-Curie Grant Agreements No. 674896, 690575 and 740055; the Ministerio de Economia y Competitividad and the Ministerio de Ciencia, Innovacion y Universidades of Spain under grants FIS2014-53371-C04, RTI2018-095979, the Severo Ochoa Program SEV-2014-0398 and the Maria de Maetzu Program MDM-2016-0692; the GVA of Spain under grants PROMETEO/2016/120 and SEJI/2017/011; the Portuguese FCT under project PTDC/FIS-NUC/2525/2014, under project UID/FIS/04559/2013 to fund the activities of LIBPhys, and under grants PD/BD/105921/2014, SFRH/BPD/109180/2015 and SFRH/BPD/76842/2011; the U.S. Department of Energy under contracts number DE-AC02-06CH11357 (Argonne National Laboratory), DE-AC02-07CH11359 (Fermi National Accelerator Laboratory), DE-FG02-13ER42020 (Texas A&M) and DE-SC0019223/DE-SC0019054 (University of Texas at Arlington); and the University of Texas at Arlington. DGD acknowledges Ramon y Cajal program (Spain) under contract number RYC-2015-18820. We also warmly acknowledge the Laboratori Nazionali del Gran Sasso (LNGS) and the Dark Side collaboration for their help with TPB coating of various parts of the NEXT-White TPC. Finally, we are grateful to the Laboratorio Subterraneo de Canfranc for hosting and supporting the NEXT experiment.Novella, P.; Palmeiro, B.; Sorel, M.; Usón, A.; Ferrario, P.; Gómez-Cadenas, JJ.; Adams, C.... (2019). Radiogenic backgrounds in the NEXT double beta decay experiment. Journal of High Energy Physics (Online). (10):1-26. https://doi.org/10.1007/JHEP10(2019)051S12610KamLAND-Zen collaboration, Search for Majorana Neutrinos near the Inverted Mass Hierarchy Region with KamLAND-Zen, Phys. Rev. Lett.117 (2016) 082503 [arXiv:1605.02889] [INSPIRE].GERDA collaboration, Improved Limit on Neutrinoless Double-β Decay of76Ge from GERDA Phase II, Phys. Rev. Lett.120 (2018) 132503 [arXiv:1803.11100] [INSPIRE].NEXT collaboration, NEXT-100 Technical Design Report (TDR): Executive Summary, 2012JINST7 T06001 [arXiv:1202.0721] [INSPIRE].M. Redshaw, E. Wingfield, J. McDaniel and E.G. Myers, Mass and double-beta-decay Q value of Xe-136, Phys. Rev. Lett.98 (2007) 053003 [INSPIRE].EXO-200 collaboration, Improved measurement of the 2νββ half-life of136Xe with the EXO-200 detector, Phys. Rev.C 89 (2014) 015502 [arXiv:1306.6106] [INSPIRE].KamLAND-Zen collaboration, Measurement of the double-β decay half-life of136Xe with the KamLAND-Zen experiment, Phys. Rev.C 85 (2012) 045504 [arXiv:1201.4664] [INSPIRE].NEXT collaboration, Initial results on energy resolution of the NEXT-White detector, 2018JINST13 P10020 [arXiv:1808.01804] [INSPIRE].NEXT collaboration, Energy Calibration of the NEXT-White Detector with 1% Resolution Near Qββof136Xe, arXiv:1905.13110 [INSPIRE].NEXT collaboration, Near-Intrinsic Energy Resolution for 30 to 662 keV Gamma Rays in a High Pressure Xenon Electroluminescent TPC, Nucl. Instrum. Meth.A 708 (2013) 101 [arXiv:1211.4474] [INSPIRE].NEXT collaboration, Characterisation of NEXT-DEMO using xenon KαX-rays, 2014JINST9 P10007 [arXiv:1407.3966] [INSPIRE].NEXT collaboration, First proof of topological signature in the high pressure xenon gas TPC with electroluminescence amplification for the NEXT experiment, JHEP01 (2016) 104 [arXiv:1507.05902] [INSPIRE].NEXT collaboration, Demonstration of the event identification capabilities of the NEXT-White detector, arXiv:1905.13141 [INSPIRE].A.D. McDonald et al., Demonstration of Single Barium Ion Sensitivity for Neutrinoless Double Beta Decay using Single Molecule Fluorescence Imaging, Phys. Rev. Lett.120 (2018) 132504 [arXiv:1711.04782] [INSPIRE].P. Thapa et al., Barium Chemosensors with Dry-Phase Fluorescence for Neutrinoless Double Beta Decay, arXiv:1904.05901 [INSPIRE].NEXT collaboration, Ionization and scintillation response of high-pressure xenon gas to alpha particles, 2013 JINST8 P05025 [arXiv:1211.4508] [INSPIRE].NEXT collaboration, Initial results of NEXT-DEMO, a large-scale prototype of the NEXT-100 experiment, 2013 JINST8 P04002 [arXiv:1211.4838] [INSPIRE].NEXT collaboration, Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array, 2013 JINST8 P09011 [arXiv:1306.0471] [INSPIRE].NEXT collaboration, Description and commissioning of NEXT-MM prototype: first results from operation in a Xenon-Trimethylamine gas mixture, 2014 JINST9 P03010 [arXiv:1311.3242] [INSPIRE].NEXT collaboration, Ionization and scintillation of nuclear recoils in gaseous xenon, Nucl. Instrum. Meth.A 793 (2015) 62 [arXiv:1409.2853] [INSPIRE].NEXT collaboration, An improved measurement of electron-ion recombination in high-pressure xenon gas, 2015 JINST10 P03025 [arXiv:1412.3573] [INSPIRE].NEXT collaboration, Accurate γ and MeV-electron track reconstruction with an ultra-low diffusion Xenon/TMA TPC at 10 atm, Nucl. Instrum. Meth.A 804 (2015) 8 [arXiv:1504.03678] [INSPIRE].NEXT collaboration, The Next White (NEW) Detector, 2018 JINST13 P12010 [arXiv:1804.02409] [INSPIRE].NEXT collaboration, Sensitivity of NEXT-100 to Neutrinoless Double Beta Decay, JHEP05 (2016) 159 [arXiv:1511.09246] [INSPIRE].V. Alvarez et al., Radiopurity control in the NEXT-100 double beta decay experiment: procedures and initial measurements, 2013 JINST8 T01002 [arXiv:1211.3961] [INSPIRE].NEXT collaboration, Radiopurity assessment of the tracking readout for the NEXT double beta decay experiment, 2015 JINST10 P05006 [arXiv:1411.1433] [INSPIRE].NEXT collaboration, Radiopurity assessment of the energy readout for the NEXT double beta decay experiment, 2017 JINST12 T08003 [arXiv:1706.06012] [INSPIRE].NEXT collaboration, Measurement of radon-induced backgrounds in the NEXT double beta decay experiment, JHEP10 (2018) 112 [arXiv:1804.00471] [INSPIRE].NEXT collaboration, Electron drift properties in high pressure gaseous xenon, 2018 JINST13 P07013 [arXiv:1804.01680] [INSPIRE].NEXT collaboration, Calibration of the NEXT-White detector using83m Kr decays, 2018JINST13 P10014 [arXiv:1804.01780] [INSPIRE].NEXT collaboration, Background rejection in NEXT using deep neural networks, 2017JINST12 T01004 [arXiv:1609.06202] [INSPIRE].NEXT collaboration, Application and performance of an ML-EM algorithm in NEXT, 2017JINST12 P08009 [arXiv:1705.10270] [INSPIRE]

    Measurement of the Xe 136 two-neutrino double -decay half-life via direct background subtraction in NEXT

    Full text link
    [EN] We report a measurement of the half-life of the 136Xe two-neutrino double-ß decay performed with a novel direct-background-subtraction technique. The analysis relies on the data collected with the NEXT-White detector operated with 136Xe-enriched and 136Xe-depleted xenon, as well as on the topology of double-electron tracks. With a fiducial mass of only 3.5 kg of Xe, a half-life of 2.34+0.80(stat)+0.30(sys)×1021 yr is derived from ¿0.46 ¿0.17 the background-subtracted energy spectrum. The presented technique demonstrates the feasibility of unique background-model-independent neutrinoless double-ß-decay searches.The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under Grant No. 951281-BOLD; the European Union's Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under Grant No. 957202-HIDDEN; the MCIN/AEI/10.13039/501100011033 of Spain and ERDF "A way of making Europe" under Grant No. RTI2018-095979, the Severo Ochoa Program Grant No. CEX2018-000867-S, and the Maria de Maeztu Program Grant No. MDM-2016-0692; the Generalitat Valenciana of Spain under Grants No. PROMETEO/2021/087 and No. CIDEGENT/2019/049; the Portuguese FCT under Project No. UID/FIS/04559/2020 to fund the activities of LIBPhys-UC; the Pazy Foundation (Israel) under Grants No. 877040 and No. 877041; the U.S. Department of Energy under Contracts No. DE-AC02-06CH11357 (Argonne National Laboratory), No. DE-AC02-07CH11359 (Fermi National Accelerator Laboratory), No. DE-FG02-13ER42020 (Texas A&M), No. DE-SC0019054 (Texas Arlington), and No. DE-SC0019223 (Arlington, TX); the U.S. National Science Foundation under Grant No. CHE 2004111; and the Robert A. Welch Foundation under Grant No. Y-203120200401. D.G.D. acknowledges support from the Ramon y Cajal program (Spain) under Contract No. RYC-2015-18820. Finally, we are grateful to the Laboratorio Subterraneo de Canfranc for hosting and supporting the NEXT experiment.Novella, P.; Sorel, M.; Usón, A.; Adams, C.; Almazán, H.; Álvarez-Puerta, V.; Aparicio, B.... (2022). Measurement of the Xe 136 two-neutrino double -decay half-life via direct background subtraction in NEXT. Physical Review C (Online). 105(5):055501-1-055501-8. https://doi.org/10.1103/PhysRevC.105.055501055501-1055501-8105

    Characterization of SABRE crystal NaI-33 with direct underground counting

    Get PDF
    Published online: 09 April 2021Ultra-pure NaI(Tl) crystals are the key element for a model-independent verification of the long standing DAMA result and a powerful means to search for the annual modulation signature of dark matter interactions. The SABRE collaboration has been developing cutting-edge techniques for the reduction of intrinsic backgrounds over several years. In this paper we report the first characterization of a 3.4 kg crystal, named NaI-33, performed in an underground passive shielding setup at LNGS. NaI-33 has a record low ³⁹K contamination of 4.3 ± 0.2 ppb as determined by mass spectrometry. We measured a light yield of 11.1 ± 0.2 photoelectrons/keV and an energy resolution of 13.2% (FWHM/E) at 59.5 keV. We evaluated the activities of ²²⁶Ra and ²²⁸Th inside the crystal to be 5.9±0.6 μBq/kg and 1.6±0.3 μBq/kg, respectively, which would indicate a contamination from ²³⁸U and ²³²Th at part-per-trillion level. We measured an activity of 0.51 ± 0.02 mBq/kg due to ²¹⁰Pb out of equilibrium and a α quenching factor of 0.63 ± 0.01 at 5304 keV. We illustrate the analyses techniques developed to reject electronic noise in the lower part of the energy spectrum. A cut-based strategy and a multivariate approach indicated a rate, attributed to the intrinsic radioactivity of the crystal, of ∼1 count/day/kg/keV in the [5–20] keV region.M. Antonello ... I. Bolognino ... A. G. Williams ... et al

    A Compact Dication Source for Ba2+^{2+} Tagging and Heavy Metal Ion Sensor Development

    Full text link
    We present a tunable metal ion beam that delivers controllable ion currents in the picoamp range for testing of dry-phase ion sensors. Ion beams are formed by sequential atomic evaporation and single or multiple electron impact ionization, followed by acceleration into a sensing region. Controllability of the ionic charge state is achieved through tuning of electrode potentials that influence the retention time in the ionization region. Barium, lead, and cobalt samples have been used to test the system, with ion currents identified and quantified using a quadrupole mass analyzer. Realization of a clean Ba2+\mathrm{Ba^{2+}} ion beam within a bench-top system represents an important technical advance toward the development and characterization of barium tagging systems for neutrinoless double beta decay searches in xenon gas. This system also provides a testbed for investigation of novel ion sensing methodologies for environmental assay applications, with dication beams of Pb2+^{2+} and Cd2+^{2+} also demonstrated for this purpose

    Sensitivity of a tonne-scale NEXT detector for neutrinoless double-beta decay searches

    Get PDF
    The Neutrino Experiment with a Xenon TPC (NEXT) searches for the neutrinoless double-beta (0¿ßß) decay of 136Xe using high-pressure xenon gas TPCs with electroluminescent amplification. A scaled-up version of this technology with about 1 tonne of enriched xenon could reach in less than 5 years of operation a sensitivity to the half-life of 0¿ßß decay better than 1027 years, improving the current limits by at least one order of magnitude. This prediction is based on a well-understood background model dominated by radiogenic sources. The detector concept presented here represents a first step on a compelling path towards sensitivity to the parameter space defined by the inverted ordering of neutrino masses, and beyond. [Figure not available: see fulltext.] © 2021, The Author(s)

    Boosting background suppression in the NEXT experiment through Richardson-Lucy deconvolution

    Get PDF
    Next-generation neutrinoless double beta decay experiments aim for half-life sensitivities of ~ 1027 yr, requiring suppressing backgrounds to < 1 count/tonne/yr. For this, any extra background rejection handle, beyond excellent energy resolution and the use of extremely radiopure materials, is of utmost importance. The NEXT experiment exploits differences in the spatial ionization patterns of double beta decay and single-electron events to discriminate signal from background. While the former display two Bragg peak dense ionization regions at the opposite ends of the track, the latter typically have only one such feature. Thus, comparing the energies at the track extremes provides an additional rejection tool. The unique combination of the topology-based background discrimination and excellent energy resolution (1% FWHM at the Q-value of the decay) is the distinguishing feature of NEXT. Previous studies demonstrated a topological background rejection factor of ~ 5 when reconstructing electron-positron pairs in the 208Tl 1.6 MeV double escape peak (with Compton events as background), recorded in the NEXT-White demonstrator at the Laboratorio Subterráneo de Canfranc, with 72% signal efficiency. This was recently improved through the use of a deep convolutional neural network to yield a background rejection factor of ~ 10 with 65% signal efficiency. Here, we present a new reconstruction method, based on the Richardson-Lucy deconvolution algorithm, which allows reversing the blurring induced by electron diffusion and electroluminescence light production in the NEXT TPC. The new method yields highly refined 3D images of reconstructed events, and, as a result, significantly improves the topological background discrimination. When applied to real-data 1.6 MeV e-e+ pairs, it leads to a background rejection factor of 27 at 57% signal efficiency. [Figure not available: see fulltext.]. © 2021, The Author(s)

    Performance of novel VUV-sensitive Silicon Photo-Multipliers for nEXO

    Full text link
    Liquid xenon time projection chambers are promising detectors to search for neutrinoless double beta decay (0νββ\nu \beta \beta), due to their response uniformity, monolithic sensitive volume, scalability to large target masses, and suitability for extremely low background operations. The nEXO collaboration has designed a tonne-scale time projection chamber that aims to search for 0νββ\nu \beta \beta of \ce{^{136}Xe} with projected half-life sensitivity of 1.35×10281.35\times 10^{28}~yr. To reach this sensitivity, the design goal for nEXO is \leq1\% energy resolution at the decay QQ-value (2458.07±0.312458.07\pm 0.31~keV). Reaching this resolution requires the efficient collection of both the ionization and scintillation produced in the detector. The nEXO design employs Silicon Photo-Multipliers (SiPMs) to detect the vacuum ultra-violet, 175 nm scintillation light of liquid xenon. This paper reports on the characterization of the newest vacuum ultra-violet sensitive Fondazione Bruno Kessler VUVHD3 SiPMs specifically designed for nEXO, as well as new measurements on new test samples of previously characterised Hamamatsu VUV4 Multi Pixel Photon Counters (MPPCs). Various SiPM and MPPC parameters, such as dark noise, gain, direct crosstalk, correlated avalanches and photon detection efficiency were measured as a function of the applied over voltage and wavelength at liquid xenon temperature (163~K). The results from this study are used to provide updated estimates of the achievable energy resolution at the decay QQ-value for the nEXO design

    Experimental study of C 13 (α,n) O 16 reactions in the Majorana Demonstrator calibration data

    Get PDF
    Neutron captures and delayed decays of reaction products are common sources of backgrounds in ultrarare event searches. In this work, we studied C13(α,n)O16 reactions induced by α particles emitted within the calibration sources of the Majorana Demonstrator. These sources are thorium-based calibration standards enclosed in carbon-rich materials. The reaction rate was estimated by using the 6129-keV γ rays emitted from the excited O16 states that are populated when the incoming α particles exceed the reaction Q value. Thanks to the excellent energy performance of the Demonstrator's germanium detectors, these characteristic photons can be clearly observed in the calibration data. Facilitated by Geant4 simulations, a comparison between the observed 6129-keV photon rates and predictions by a talys-based software was performed. The measurements and predictions were found to be consistent, albeit with large statistical uncertainties. This agreement provides support for background projections from (α,n) reactions in future double-beta decay search efforts
    corecore