642 research outputs found

    Quark number susceptibilities of hot QCD up to g^6ln(g)

    Get PDF
    The pressure of hot QCD has recently been determined to the last perturbatively computable order g^6 ln(g) by Kajantie et al. using three-dimensional effective theories. A similar method is applied here to the pressure in the presence of small but non-vanishing quark chemical potentials, and the result is used to derive the quark number susceptibilities in the limit mu = 0. The diagonal quark number susceptibility of QCD with n_f flavours of massless quarks is evaluated to order g^6ln(g) and compared with recent lattice simulations. It is observed that the results qualitatively resemble the lattice ones, and that when combined with the fully perturbative but yet undetermined g^6 term they may well explain the behaviour of the lattice data for a wide range of temperatures.Comment: 11 pages, 3 figures Typos corrected, references added, figures modifie

    Level spacing statistics of classically integrable systems -Investigation along the line of the Berry-Robnik approach-

    Full text link
    By extending the approach of Berry and Robnik, the limiting level spacing distribution of a system consisting of infinitely many independent components is investigated. The limiting level spacing distribution is characterized by a single monotonically increasing function μˉ(S)\bar{\mu}(S) of the level spacing SS. Three cases are distinguished: (i) Poissonian if μˉ(+)=0\bar{\mu}(+\infty)=0, (ii) Poissonian for large SS, but possibly not for small SS if 0<μˉ(+)<10<\bar{\mu}(+\infty)< 1, and (iii) sub-Poissonian if μˉ(+)=1\bar{\mu}(+\infty)=1. This implies that, even when energy-level distributions of individual components are statistically independent, non-Poissonian level spacing distributions are possible.Comment: 19 pages, 4 figures. Accepted for publication in Phys. Rev.

    Parton rescattering and screening in Au+Au collisions at RHIC

    Get PDF
    We study the microscopic dynamics of quarks and gluons in relativistic heavy ion collisions in the framework of the Parton Cascade Model. We use lowest order perturbative QCD cross sections with fixed lower momentum cutoff p_0. We calculate the time-evolution of the Debye-screening mass for Au+Au collisions at sqrt(s)=200 GeV per nucleon pair. The screening mass is used to determine a lower limit for the allowed range of p_0. We also determine the energy density reached through hard and semi-hard processes at RHIC, obtain a lower bound for the rapidity density of charged hadrons produced by semihard interactions, and analyze the extent of perturbative rescattering among partons.Comment: 6 pages, 4 figures, uses RevTeX 4.0; revised version with minor corrections and one updated figur

    Quark-Gluon Plasma Fireball

    Full text link
    Lattice-QCD results provide an opportunity to model, and extrapolate to finite baryon density, the properties of the quark-gluon plasma (QGP). Upon fixing the scale of the thermal coupling constant and vacuum energy to the lattice data, the properties of resulting QGP equations of state (EoS) are developed. We show that the physical properties of the dense matter fireball formed in heavy ion collision experiments at CERN-SPS are well described by the QGP-EoS we presented. We also estimate the properties of the fireball formed in early stages of nuclear collision, and argue that QGP formation must be expected down to 40A GeV in central Pb--Pb interactions.Comment: 10 pages, 9 postscript figures, 1 table, uses revtex, V3: introduced difference between n_f and n_s; fireball restframe energy corrected, references added. Publisched version in press Phys. Rev.

    Perturbations of anti-de Sitter black holes

    Full text link
    I review perturbations of black holes in asymptotically anti-de Sitter space. I show how the quasi-normal modes governing these perturbations can be calculated analytically and discuss the implications on the hydrodynamics of gauge theory fluids per the AdS/CFT correspondence. I also discuss phase transitions of hairy black holes with hyperbolic horizons and the dual superconductors emphasizing the analytical calculation of their properties.Comment: 25 pages, 4 figures, prepared for the proceedings of the 5th Aegean Summer School "From Gravity to Thermal Gauge Theories: the AdS/CFT Correspondence," Milos, Greece, September 2009

    The pressure of hot QCD up to g^6 ln(1/g)

    Full text link
    The free energy density, or pressure, of QCD has at high temperatures an expansion in the coupling constant g, known so far up to order g^5. We compute here the last contribution which can be determined perturbatively, g^6 ln(1/g), by summing together results for the 4-loop vacuum energy densities of two different three-dimensional effective field theories. We also demonstrate that the inclusion of the new perturbative g^6 ln(1/g) terms, once they are summed together with the so far unknown perturbative and non-perturbative g^6 terms, could potentially extend the applicability of the coupling constant series down to surprisingly low temperatures.Comment: 18 pages. Small clarifications added. To appear in Phys.Rev.

    Calculations of parity nonconserving s-d transitions in Cs, Fr, Ba II, and Ra II

    Get PDF
    We have performed ab initio mixed-states and sum-over-states calculations of parity nonconserving (PNC) electric dipole (E1) transition amplitudes between s-d electron states of Cs, Fr, Ba II, and Ra II. For the lower states of these atoms we have also calculated energies, E1 transition amplitudes, and lifetimes. We have shown that PNC E1 transition amplitudes between s-d states can be calculated to high accuracy. Contrary to the Cs 6s-7s transition, in these transitions there are no strong cancelations between different terms in the sum-over-states approach. In fact, there is one dominating term which deviates from the sum by less than 20%. This term corresponds to an s-p_{1/2} weak matrix element, which can be calculated to better than 1%, and a p_{1/2}-d_{3/2} E1 transition amplitude, which can be measured. Also, the s-d amplitudes are about four times larger than the corresponding s-s transitions. We have shown that by using a hybrid mixed-states/sum-over-states approach the accuracy of the calculations of PNC s-d amplitudes could compete with that of Cs 6s-7s if p_{1/2}-d_{3/2} E1 amplitudes are measured to high accuracy.Comment: 15 pages, 8 figures, submitted to Phys. Rev.

    Localization Properties of the Chalker-Coddington Model

    Full text link
    The Chalker Coddington quantum network percolation model is numerically pertinent to the understanding of the delocalization transition of the quantum Hall effect. We study the model restricted to a cylinder of perimeter 2M. We prove firstly that the Lyapunov exponents are simple and in particular that the localization length is finite; secondly that this implies spectral localization. Thirdly we prove a Thouless formula and compute the mean Lyapunov exponent which is independent of M.Comment: 29 pages, 1 figure. New section added in which simplicity of the Lyapunov spectrum and finiteness of the localization length are proven. To appear in Annales Henri Poincar
    corecore