25,958 research outputs found

    Real-time Chern-Simons term for hypermagnetic fields

    Full text link
    If non-vanishing chemical potentials are assigned to chiral fermions, then a Chern-Simons term is induced for the corresponding gauge fields. In thermal equilibrium anomalous processes adjust the chemical potentials such that the coefficient of the Chern-Simons term vanishes, but it has been argued that there are non-equilibrium epochs in cosmology where this is not the case and that, consequently, certain fermionic number densities and large-scale (hypermagnetic) field strengths get coupled to each other. We generalise the Chern-Simons term to a real-time situation relevant for dynamical considerations, by deriving the anomalous Hard Thermal Loop effective action for the hypermagnetic fields, write down the corresponding equations of motion, and discuss some exponentially growing solutions thereof.Comment: 13 page

    Effective Kinetic Theory for High Temperature Gauge Theories

    Full text link
    Quasiparticle dynamics in relativistic plasmas associated with hot, weakly-coupled gauge theories (such as QCD at asymptotically high temperature TT) can be described by an effective kinetic theory, valid on sufficiently large time and distance scales. The appropriate Boltzmann equations depend on effective scattering rates for various types of collisions that can occur in the plasma. The resulting effective kinetic theory may be used to evaluate observables which are dominantly sensitive to the dynamics of typical ultrarelativistic excitations. This includes transport coefficients (viscosities and diffusion constants) and energy loss rates. We show how to formulate effective Boltzmann equations which will be adequate to compute such observables to leading order in the running coupling g(T)g(T) of high-temperature gauge theories [and all orders in 1/log⁡g(T)−11/\log g(T)^{-1}]. As previously proposed in the literature, a leading-order treatment requires including both 2222 particle scattering processes as well as effective ``1212'' collinear splitting processes in the Boltzmann equations. The latter account for nearly collinear bremsstrahlung and pair production/annihilation processes which take place in the presence of fluctuations in the background gauge field. Our effective kinetic theory is applicable not only to near-equilibrium systems (relevant for the calculation of transport coefficients), but also to highly non-equilibrium situations, provided some simple conditions on distribution functions are satisfied.Comment: 40 pages, new subsection on soft gauge field instabilities adde

    A transport coefficient: the electrical conductivity

    Full text link
    I describe the lattice determination of the electrical conductivity of the quark gluon plasma. Since this is the first extraction of a transport coefficient with a degree of control over errors, I next use this to make estimates of other transport related quantities using simple kinetic theory formulae. The resulting estimates are applied to fluctuations, ultra-soft photon spectra and the viscosity. Dimming of ultra-soft photons is exponential in the mean free path, and hence is a very sensitive probe of transport.Comment: Talk given in ICPAQGP 2005, SINP, Kolkat

    Transport Coefficients of Gluon Plasma

    Get PDF
    Transport coefficients of gluon plasma are calculated for a SU(3) pure gauge model by lattice QCD simulations on 163×816^3 \times 8 and 243×824^3 \times 8 lattices. Simulations are carried out at a slightly above the deconfinement transition temperature TcT_c, where a new state of matter is currently being pursued in RHIC experiments. Our results show that the ratio of the shear viscosity to the entropy is less than one and the bulk viscosity is consistent with zero in the region, 1.4≀T/Tc≀1.81.4 \leq T/T_c \leq 1.8 .Comment: 10 pages, Late

    High temperature color conductivity at next-to-leading log order

    Full text link
    The non-Abelian analog of electrical conductivity at high temperature has previously been known only at leading logarithmic order: that is, neglecting effects suppressed only by an inverse logarithm of the gauge coupling. We calculate the first sub-leading correction. This has immediate application to improving, to next-to-leading log order, both effective theories of non-perturbative color dynamics, and calculations of the hot electroweak baryon number violation rate.Comment: 47 pages, 6+2 figure

    Transport coefficients in high temperature gauge theories: (II) Beyond leading log

    Get PDF
    Results are presented of a full leading-order evaluation of the shear viscosity, flavor diffusion constants, and electrical conductivity in high temperature QCD and QED. The presence of Coulomb logarithms associated with gauge interactions imply that the leading-order results for transport coefficients may themselves be expanded in an infinite series in powers of 1/log(1/g); the utility of this expansion is also examined. A next-to-leading-log approximation is found to approximate the full leading-order result quite well as long as the Debye mass is less than the temperature.Comment: 38 pages, 6 figure

    Uranium(III) coordination chemistry and oxidation in a flexible small-cavity macrocycle

    Get PDF
    U(III) complexes of the conformationally flexible, small-cavity macrocycle trans-calix[2]benzene[2]pyrrolide (L)2–, [U(L)X] (X = O-2,6-tBu2C6H3, N(SiMe3)2), have been synthesized from [U(L)BH4] and structurally characterized. These complexes show binding of the U(III) center in the bis(arene) pocket of the macrocycle, which flexes to accommodate the increase in the steric bulk of X, resulting in long U–X bonds to the ancillary ligands. Oxidation to the cationic U(IV) complex [U(L)X][B(C6F5)4] (X = BH4) results in ligand rearrangement to bind the smaller, harder cation in the bis(pyrrolide) pocket, in a conformation that has not been previously observed for (L)2–, with X located between the two ligand arene rings

    Degree of randomness: numerical experiments for astrophysical signals

    Full text link
    Astrophysical and cosmological signals such as the cosmic microwave background radiation, as observed, typically contain contributions of different components, and their statistical properties can be used to distinguish one from the other. A method developed originally by Kolmogorov is involved for the study of astrophysical signals of randomness of various degrees. Numerical performed experiments based on the universality of Kolmogorov distribution and using a single scaling of the ratio of stochastic to regular components, reveal basic features in the behavior of generated signals also in terms of a critical value for that ratio, thus enable the application of this technique for various observational datasetsComment: 6 pages, 9 figures; Europhys.Letters; to match the published versio

    Radiative and Collisional Energy Loss, and Photon-Tagged Jets at RHIC

    Full text link
    The suppression of single jets at high transverse momenta in a quark-gluon plasma is studied at RHIC energies, and the additional information provided by a photon tag is included. The energy loss of hard jets traversing through the medium is evaluated in the AMY formalism, by consistently taking into account the contributions from radiative events and from elastic collisions at leading order in the coupling. The strongly-interacting medium in these collisions is modelled with (3+1)-dimensional ideal relativistic hydrodynamics. Putting these ingredients together with a complete set of photon-production processes, we present a calculation of the nuclear modification of single jets and photon-tagged jets at RHIC.Comment: 4 pages, 4 figures, contributed to the 3rd International Conference on Hard and Electro-Magnetic Probes of High-Energy Nuclear Collisions (Hard Probes 2008), typos corrected, published versio

    Thermodynamic phase transitions and shock singularities

    Full text link
    We show that under rather general assumptions on the form of the entropy function, the energy balance equation for a system in thermodynamic equilibrium is equivalent to a set of nonlinear equations of hydrodynamic type. This set of equations is integrable via the method of the characteristics and it provides the equation of state for the gas. The shock wave catastrophe set identifies the phase transition. A family of explicitly solvable models of non-hydrodynamic type such as the classical plasma and the ideal Bose gas are also discussed.Comment: revised version, 18 pages, 6 figure
    • 

    corecore