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Transport coefficients of gluon plasma are calculated for an SU(3) pure gauge model by lattice QCD
simulations on 163 X 8 and 24 X 8 lattices. Simulations are carried out at slightly above the deconfine-
ment transition temperature 7., where a new state of matter is currently being pursued in BNL RHIC
experiments. Our results show that the ratio of the shear viscosity to the entropy is less than one and the
bulk viscosity is consistent with zero in the region 1.4 < T/T, < 1.8.
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Introduction.—BNL Relativistic Heavy Ion Collider
(RHIC) experiments have been providing us with many
surprises. One of them is that the data are unexpectedly
well described by the hydrodynamical model [1].
Experimental data and phenomenological analyses suggest
that the quark-gluon plasma (QGP) or a new state of matter
may be produced. See Ref. [2] for a review of RHIC
experiments. Molnar and Gyulassy investigated the elliptic
flow data using a Boltzmann-type equation for gluon scat-
tering, and found that they needed a cross section about
50 times larger than expected in perturbative QCD [3].
This indicates that the QGP state above the phase transition
temperature, 7, is not a free gas of perturbed gluons. The
QCD-TARO Collaboration measured the temporal meson
propagators and found that their wave functions do not
behave as free particles even at T ~ 1.5T; it was conjec-
tured that the strong interactions between the thermal
gluons and quarks may provide binding forces. Recently,
more extended analyses of the temporal propagators were
reported by three groups [4—6], and it was suggested that
the charmonium state survives until around 27,..

The new state of matter produced at high temperatures in
RHIC experiments is most likely not a weakly interacting
plasma, but a strongly interacting quark-gluon system.
Investigating the results in Ref. [3], Teaney found that
n/s ~ 0.04, where 7 and s are the shear viscosity and
the entropy, respectively [7]. Shuryak and Zahed have
proposed a “strongly coupled QGP” model for the new
state of matter above T, [8], and argued that the QGP
studied in RHIC is the most perfect fluid ever measured.
Policastro et al. calculated m for the finite-temperature
N = 4 supersymmetric Yang-Mills theory in the large
N, strong-coupling regime, and obtained n/s = 1/4m
[9]. This value was found to be universal for theories
with gravity duals, and it is conjectured that n/s = 1/4m
is a lower limit for all systems in nature [10].

It has now become highly desirable to study the nature of
the quark-gluon system, particularly its hydrodynamical
parameters such as the transport coefficients above T.
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based on QCD in a nonperturbative manner. In this
Letter, we calculate the transport coefficients of QGP at
slightly above T, by the lattice simulations. Simulations
are carried out in the quenched approximation. For the
calculation of the transport coefficients on a lattice, we
apply the formulation based on the linear response theory
[11-13], where the transport coefficients are calculated
from Matsubara-Green’s function of energy momentum
tensors. Numerical simulations of transport coefficients
with this formulation were first carried out by Karsch and
Wyld [14]. In their pioneering work, they performed the
simulation on an 83 X 4 lattice, but unfortunately, the size
in the imaginary time direction was too small for the
determination of the transport coefficients.

We report here our simulation on an N; = 8§ lattice with
renormalization group (RG) improved action by Iwasaki.
Our results are summarized as follows. (1) The ratio of the
shear viscosity to the entropy m/s is small, i.e., less than
one, but it is most probably larger than 1/47. (2) The bulk
viscosity is less than the shear viscosity and is consistent
with zero within the present statistics. For heat conductiv-
ity, we could obtain no meaningful result. This is because,
in pure gauge theory, there is no conserved current which
transports heat [15]. Preliminary results based on 16 X 8
and smaller lattices have been reported at lattice and quark
matter conferences [16,17].

Transport coefficients in linear response theory.—The
formulation for the transport coefficients of QGP in the
framework of the linear response theory has been given in
Refs. [11-13]. For the sake of consistency, we shall sum-
marize the formulas which will be used in the following
calculations.

Transport coefficients are calculated using the space-
time integral of a retarded Green’s function of energy
momentum tensors,

n=- f <T12<z, T (@, t'>> . (1)
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where [ = [dx [*  dtje€t™) [0 di' and n and {
represent shear and bulk viscosities, respectively.

<TM,,TM> is the retarded Green’s function of the energy
ret

momentum tensors at finite-temperature. For the pure
gauge theory, T,,’s are written using field strength tensors
Fop: Ty =2THF,,F,; —+8,,F,,F,,) F,,’s are de-
fined by plaquette variables on the lattice as U,,(x) =
explia®gF,,(x)], and are obtained either by taking the
log of U, directly, or by expanding U ,, with respect to
a> g. In the following, we use the latter method to calculate
F,, [14,18].

It is difficult to calculate the retarded Green’s functions
in the lattice QCD in which Matsubara-Green’s functions
are measured. The retarded Green’s functions are obtained
from the analytic continuation. We obtain the numerical
values of Matsubara-Green’s functions at discrete variables
w, = 27nT in the momentum space, while the retarded
Green’s functions are functions of the continuous variable
po- Therefore, we require a bridge for analytic
continuation.

Matsubara-Green’s functions Gz are expressed in a

Fourier-transformed form with the spectral function p:

%@0=Zw¢ﬂmﬂ&ﬂ .

iw, —w

It is well known that the spectral function is common to
both the retarded and Matsubara-Green’s functions [19].
The expression for retarded Green’s functions is obtained
by setting iw, — po + i€.

The determination of p(p, w) is not straightforward,
because in a numerical simulation, Matsubara-Green’s
function has a finite number of points in the temperature
direction, N7/2. We must employ an ansatz for the spectral
function with parameters, which are determined by fitting
Matsubara-Green’s function. The simplest nontrivial an-
satz for the spectral function was proposed by Karsch and
Wyld [14] as

Mﬁ=am=é( A o)
m\(m — w)?+ 9> (m+ w)?+ y?

“

where 7y represents the effects of interactions and is related
to the imaginary part of the self-energy. This ansatz is
supported by perturbative calculations [11,13].

Once we use this ansatz for the spectral function, the
space-time integral of the retarded Green’s function can be
calculated analytically. The result is

2
@ = 22 o)

=4y
(Y2 +m

where « represents the shear viscosity 7, bulk viscosity £,

or heat conductivity y X T. At least three independent data
points for Matsubara-Green’s functions are necessary to
determine these parameters.

In Ref. [14], a simulation on a 83 X 4 lattice, where two
independent data points in the temperature direction are
available, was carried out. In this simulation, three parame-
ters in the spectral function could not be determined. In
order to determine A, vy, and m, we adopt Ny = 8.

Numerical simulations.—We calculate the transport co-
efficients in the SU(3) gauge theory for the regions slightly
above the transition temperature, which are covered in
RHIC experiments. We adopt Iwasaki’s improved gauge
action, which is closer to the renormalized trajectory than
the plaquette action, and we obtain results close to the
continuum limit on relatively coarse lattices [20]. We
found that the fluctuation of Matsubara-Green’s function
is greatly suppressed compared with the standard plaquette
action [21].

We should first determine the critical 8 of Iwasaki’s
improved action on the Ny = 8 lattice. For the Ny = 4
and 6 lattices, the critical B values for this action were
determined by the Tsukuba group [22]. We have carried
out a simulation for 8, on a 16> X 8 lattice [21]. However,
the volume size was small, and we could obtain only a
rough estimation of 8, that is, 2.70 < 8. < 2.72. Using
the finite size scaling formula [22], B, at Ny = 8 becomes
2.72 < B.<2.74. The values of B, determined by the
simulation for Ny =4, 6, and 8 do not yet satisfy the
asymptotic two-loop scaling relation. We take 8 = 3.05,
3.2, and 3.3 as our simulation points.

Matsubara-Green’s function on Np = 8 lattice.—For
Matsubara-Green’s functions G; and G,,, from which
the shear and bulk viscosities are calculated, we can obtain
reliable signals from approximately 0.8 X 10°® Monte
Carlo simulation (MC) data on a 243 X 8 lattice. As an
example, G, is shown in Fig. 1 for 8 = 3.3. In the case of
the 16 X 8 lattice, the errors are larger than the signal at
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FIG. 1 (color online). Numerical data points and fitting results
of Matsubara-Green’s function G,(¢) on a 24 X 8 lattice.
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T = 4, even with more than 10® MC simulation data. The
volume of 16> may be too small for N; = 8.

Transport coefficients of gluon plasma.—The fitting of
Matsubara-Green’s function by Eq. (4) is carried out by
applying a nonlinear least-square fitting program, SALS.
Then the transport coefficients of the gluon plasma are
calculated using Eq. (5). The errors are estimated by the
jackknife method. The bin size in the jackknife analysis is
changed from 5 X 10* to 1.2 X 10°. The results are inde-
pendent of the bin size. In the following, the bin size is
100 000.

In Table I, we show the fitting results of the spectral
function, Eq. (4). The parameters A and m control overall
size and slope of dumping rate of Green’s function, while y
measures the deviation from simple pole behavior. If any of
the three parameters is zero, the transport coefficient van-
ishes [Eq. (5)]. We see that large statistical errors originate
from Avy.

The results for the shear and bulk viscosities are given in
Table II. The bulk viscosity is equal to zero within the
range of error bars, while the shear viscosity may be finite.
We see little size dependence.

In the lattice calculations, the shear viscosity is calcu-
lated in the form 7 X a>. In order to express it in physical
units, we need to know the lattice spacing a at each 3
value. For the estimation of a, we use the finite-
temperature transition point 8.. We take B, = 2.73 for
N; = 8. The transition temperature is 7, = 276 MeV
[22], and asymptotic two-loop scaling for the region 8 >
2.73 is assumed. The lattice spacing and the shear and bulk
viscosities in physical units are also listed in Table II. '/3
expressed in physical units is slightly less than the ordinary
hadron masses around 7.

Viscosity-entropy ratio.—As discussed in the introduc-
tion, the ratio of the shear viscosity and entropy density is
estimated for QGP [7,8] and for N' = 4 supersymmetric
Yang-Mills theory. To get the ratio in lattice QCD, we

TABLE I. Parameters of the spectral functions in Matsubara-
Green’s functions G;; and Gy,.
Gy
B m 4 Ay
16° 3.05 2.94(18) 0.0087(127) 0.0061(97)
32 3.35(67) 0.048(61) 0.054(89)
33 2.89(19) 0.014(27) 0.0099(213)
243 3.05 3.04(29) 0.036(29) 0.028(30)
33 3.43(40) 0.058(39) 0.069(63)
G
B m Y Ay
16° 3.05 3.24(19) 0.018(28) 0.016(27)
32 3.43(57) 0.058(45) 0.063(75)
33 2.87(24) 0.012(26) 0.0079(188)
243 3.05 3.16(30) 0.036(37) 0.029(38)
33 3.69(49) 0.067(24) 0.093(75)

require lattice entropy data at the same coupling regions
and Nrp.

In a homogeneous system, the entropy density s can be
obtained from the energy density € and the pressure as

s=S8/V=_(e+ p)/T. (6)

Using lattices with Ny = 8, CP-PACS collaboration calcu-
lated p and e [23]. We reconstruct the results from their
numerical raw data and calculate the entropy density in
Eq. (6).

Concluding remarks.—In the high temperature limit, the
transport coefficients have been calculated analytically by
the perturbation method [11,24—28]. They are summarized
as follows. (1) The bulk viscosity is smaller than the shear
viscosity. This is consistent with our numerical results. (2)
The shear viscosity in the next-to-leading log (NLL) is
expressed by, L = (T°/g")C,/log(p*/mp) [28],

where mp, = /1 + N;/6¢T, and for the pure gluon system
C, =27.126 and p*/T = 2.765.

There is a slight ambiguity in the relationship between
coupling g and the temperature, and we use a simple form,
g 2 =2bylog(4T/A) with by = 11N,/487%. The scale
parameter A on the lattice is set to be A/T,. =~ 1.5. For
the entropy density, we use the result by a hard-thermal
loop calculation [29]. With these formulae, the perturbative
1/s can be compared with the results of numerical calcu-
lations. The result is shown in Fig. 2.

In this Letter, we reported the first lattice QCD result of
the transport coefficients in the vicinity of the critical
temperature. Although it still contains large errors, it may
provide useful information for understanding QGP in these
temperature regions. Especially we find that 0 < n/s < 1,
i.e., we give the upper bound for the viscosity-entropy ratio
of QGP. This is one- or two-orders of magnitude smaller
than ordinary liquid such as water and He [10]. The small
1/s supports the success of the hydrodynamical descrip-
tion for QGP. Applicability conditions of the hydrodynam-
ical model in the quantum field theory were first considered
in Ref. [30]. Together with experimental and phenomeno-
logical studies, the field theoretical approach will enrich
our understanding of the new state of matter. We have
shown here that the lattice QCD numerical simulations
can provide useful information.

TABLE II. Shear and bulk viscosities nondimensional and in
physical units. The lattice scales, a™!'=3.09, 3.62, and
4.03 GeV for B = 3.05, 3.20, and 3.30, respectively.

B na’ {a’
3.05 0.0018(28) —0.0015(29)
16> 32 0.0059(46) —0.0025(20)  0.281(223) —0.122(90)
3.3 0.0013(27) —0.0001(42)  0.084(175) —0.008(276)
243 3.05 0.0036(36) —0.00095(288) 0.106(108) —0.028(85)
3.3 0.0072(30) —0.0031(26)  0.471(194) —0.201(167)

1nGeV? {GeV?
0.054(82) —0.044(85)
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FIG. 2 (color online). The ratio of the shear viscosity to the
entropy as a function of 7/T, Kovtun-Son-Starinets bound is
1/44r [10]. “Perturbative theory” is constructed from = in
Ref. [28] and s in Ref. [29].

The next step is to obtain data with smaller systematic
and statistical errors. If we can reduce the error bars in
Fig. 2 by a factor of 2 or 3, we may realistically compare
the data with the conjecture in Ref. [10]. We observed that
Matsubara-Green’s function suffers from large fluctua-
tions, but by using the improved action, the fluctuations
are significantly reduced. Another possibility for reducing
the fluctuations may be to employ improved operators for
T,, [31].

The results here depend on the ansatz of the spectral
function of the Fourier transform of Matsubara-Green’s
function. In order to test the functional form of the spectral
function, we need more data points for Matsubara-Green’s
function in the temperature direction. To this end, the most
effective approach will be to apply an anisotropic lattice. If
we can obtain a sufficient number of data points, the
maximum entropy method is a promising way of determin-
ing a spectral function [32] that is free from the ansatz.
Aarts and Martinez-Resco pointed out, however, that it is
difficult to extract transport coefficients in weakly coupled
theories from the Euclidean lattice, since Green’s function
is insensitive to details of the spectral function p(w) at
small w [33]. New concepts will be necessary to overcome
this difficulty.
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discussions and their constant encouragement. One of the
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