1,479 research outputs found

    Phase-dependent light propagation in atomic vapors

    Get PDF
    Light propagation in an atomic medium whose coupled electronic levels form a diamond-configuration exhibits a critical dependence on the input conditions. In particular, the relative phase of the input fields gives rise to interference phenomena in the electronic excitation whose interplay with relaxation processes determines the stationary state. We integrate numerically the Maxwell-Bloch equations and observe two metastable behaviors for the relative phase of the propagating fields corresponding to two possible interference phenomena. These phenomena are associated to separate types of response along propagation, minimize dissipation, and are due to atomic coherence. These behaviors could be studied in gases of isotopes of alkali-earth atoms with zero nuclear spin, and offer new perspectives in control techniques in quantum electronics.Comment: 16 pages, 11 figures, v2: typos corrected, v3: final version, to appear in Phys. Rev.

    Herbivore defence compounds occur in pollen and reduce bumblebee colony fitness

    Get PDF
    Herbivory defence chemicals in plants can affect higher trophic levels such as predators and parasitoids, but the impact on pollinators has been overlooked. We show that defensive plant chemicals can damage pollinator fitness when expressed in pollen. Crop lupins (Lupinus species from Europe and South America) accumulate toxic quinolizidine alkaloids in vegetative tissues, conferring resistance to herbivorous pests such as aphids. We identified the alkaloid lupanine and its derivatives in lupin pollen, and then provided this compound at ecologically-relevant concentrations to queenless microcolonies of bumblebees (Bombus terrestris) in their pollen to determine how foraging on these crops may impact bee colony health and fitness. Fewer males were produced by microcolonies provided with lupanine-treated pollen and they were significantly smaller than controls. This impact on males was not linked to preference as workers willingly fed lupanine-treated pollen to larvae, even though it was deleterious to colony health. Agricultural systems comprising large monocultures of crops bred for herbivore resistance can expose generalist pollinators to deleterious levels of plant compounds, and the broader environmental impacts of crop resistance must thus be considered

    Evaluation of bile salt hydrolase inhibitor efficacy for modulating host bile profile and physiology using a chicken model system

    Get PDF
    Gut microbial enzymes, bile salt hydrolases (BSHs) are the gateway enzymes for bile acid (BA) modification in the gut. This activity is a promising target for developing innovative non-antibiotic growth promoters to enhance animal production and health. Compelling evidence has shown that inhibition of BSH activity should enhance weight gain by altering the BA pool, host signalling and lipid metabolism. We recently identified a panel of promising BSH inhibitors. Here, we address the potential of them as alternative, effective, non-antibiotic feed additives, for commercial application, to promote animal growth using a chicken model. In this study, the in vivo efficacy of three BSH inhibitors (caffeic acid phenethylester, riboflavin, carnosic acid) were evaluated. 7-day old chicks (10 birds/group) were either untreated or they received one of the specific BSH inhibitors (25 mg/kg body weight) via oral gavage for 17 days. The chicks in treatment groups consistently displayed higher body weight gain than the untreated chicks. Metabolomic analysis demonstrated that BSH inhibitor treatment led to significant changes in both circulating and intestinal BA signatures in support of blunted intestinal BSH activity. Consistent with this finding, liver and intestinal tissue RNA-Seq analysis showed that carnosic acid treatment significantly altered expression of genes involved in lipid and bile acid metabolism. Taken together, this study validates microbial BSH activity inhibition as an alternative target and strategy to antibiotic treatment for animal growth promotion

    Photophobia in migraine: a symptom cluster?

    Get PDF
    Photophobia is one of the most common symptoms in migraine, and the underlying mechanism is uncertain. The discovery of the intrinsically-photosensitive retinal ganglion cells (ipRGCs) which signal the intensity of light on the retina has led to discussion of their role in the pathogenesis of photophobia. In the current review, we discuss the relationship between pain and discomfort leading to light aversion (traditional photophobia) and discomfort from flicker, patterns, and colour that are also common in migraine and cannot be explained solely by ipRGC activity. We argue that, at least in migraine, a cortical mechanism provides a parsimonious explanation for discomfort from all forms of visual stimulation, and that the traditional definition of photophobia as pain in response to light may be too restrictive. Future investigation that directly compares the retinal and cortical contributions to photophobia in migraine with that in other conditions may offer better specificity in identifying biomarkers and possible mechanisms to target for treatment

    Controlling the Biomimetic Implant Interface: Modulating Antimicrobial Activity by Spacer Design

    Get PDF
    Surgical site infection is a common cause of post-operative morbidity, often leading to implant loosening, ultimately requiring revision surgery, increased costs and worse surgical outcomes. Since implant failure starts at the implant surface, creating and controlling the bio-material interface will play a critical role in reducing infection while improving host cell-to-implant interaction. Here, we engineered a biomimetic interface based upon a chimeric peptide that incorporates a titanium binding peptide (TiBP) with an antimicrobial peptide (AMP) into a single molecule to direct binding to the implant surface and deliver an antimicrobial activity against S. mutans and S. epidermidis, two bacteria which are linked with clinical implant infections. To optimize antimicrobial activity, we investigated the design of the spacer domain separating the two functional domains of the chimeric peptide. Lengthening and changing the amino acid composition of the spacer resulted in an improvement of minimum inhibitory concentration by a three-fold against S. mutans. Surfaces coated with the chimeric peptide reduced dramatically the number of bacteria, with up to a nine-fold reduction for S. mutans and a 48-fold reduction for S. epidermidis. Ab initio predictions of antimicrobial activity based on structural features were confirmed. Host cell attachment and viability at the biomimetic interface were also improved compared to the untreated implant surface. Biomimetic interfaces formed with this chimeric peptide offer interminable potential by coupling antimicrobial and improved host cell responses to implantable titanium materials, and this peptide based approach can be extended to various biomaterials surfaces

    Diversity-Oriented Enzymatic Synthesis of Cyclopropane Building Blocks

    Get PDF
    While biocatalysis is increasingly incorporated into drug development pipelines, it is less commonly used in the early stages of drug discovery. By engineering a protein to produce a chiral motif with a derivatizable functional handle, biocatalysts can be used to help generate diverse building blocks for drug discovery. Here we show the engineering of two variants of Rhodothermus marinus nitric oxide dioxygenase (RmaNOD) to catalyze the formation of cis- and trans-diastereomers of a pinacolboronate-substituted cyclopropane which can be readily derivatized to generate diverse stereopure cyclopropane building blocks

    Diversity-Oriented Enzymatic Synthesis of Cyclopropane Building Blocks

    Get PDF
    While biocatalysis is increasingly incorporated into drug development pipelines, it is less commonly used in the early stages of drug discovery. By engineering a protein to produce a chiral motif with a derivatizable functional handle, biocatalysts can be used to help generate diverse building blocks for drug discovery. Here we show the engineering of two variants of Rhodothermus marinus nitric oxide dioxygenase (RmaNOD) to catalyze the formation of cis- and trans-diastereomers of a pinacolboronate-substituted cyclopropane which can be readily derivatized to generate diverse stereopure cyclopropane building blocks

    A tomographic microscopy-compatible Langendorff system for the dynamic structural characterization of the cardiac cycle

    Get PDF
    ntroduction: Cardiac architecture has been extensively investigated ex vivo using a broad spectrum of imaging techniques. Nevertheless, the heart is a dynamic system and the structural mechanisms governing the cardiac cycle can only be unveiled when investigating it as such. Methods: This work presents the customization of an isolated, perfused heart system compatible with synchrotron-based X-ray phase contrast imaging (X-PCI). Results: Thanks to the capabilities of the developed setup, it was possible to visualize a beating isolated, perfused rat heart for the very first time in 4D at an unprecedented 2.75 ÎĽm pixel size (10.6 ÎĽm spatial resolution), and 1 ms temporal resolution. Discussion: The customized setup allows high-spatial resolution studies of heart architecture along the cardiac cycle and has thus the potential to serve as a tool for the characterization of the structural dynamics of the heart, including the effects of drugs and other substances able to modify the cardiac cycle

    Early-Onset Bipolar Spectrum Disorders: Diagnostic Issues

    Get PDF
    Since the mid 1990s, early-onset bipolar spectrum disorders (BPSDs) have received increased attention in both the popular press and scholarly press. Rates of diagnosis of BPSD in children and adolescents have increased in inpatient, outpatient, and primary care settings. BPSDs remain difficult to diagnose, particularly in youth. The current diagnostic system makes few modifications to accommodate children and adolescents. Researchers in this area have developed specific BPSD definitions that affect the generalizability of their findings to all youth with BPSD. Despite knowledge gains from the research, BPSDs are still difficult to diagnose because clinicians must: (1) consider the impact of the child’s developmental level on symptom presentation (e.g., normative behavior prevalence, environmental limitations on youth behavior, pubertal status, irritability, symptom duration); (2) weigh associated impairment and course of illness (e.g., neurocognitive functioning, failing to meet full DSM criteria, future impairment); and (3) make decisions about appropriate assessment (differentiating BPSD from medical illnesses, medications, drug use, or other psychiatric diagnoses that might better account for symptoms; comorbid disorders; informant characteristics and assessment measures to use). Research findings concerning these challenges and relevant recommendations are offered. Areas for further research to guide clinicians’ assessment of children with early-onset BPSD are highlighted
    • …
    corecore