32,610 research outputs found

    Exploring accuracy and impact of concurrent and retrospective self-talk among golfers

    Full text link
    The current study aimed to provide insight into the types and frequency of self-talk of skilled golfers (n = 6) by considering and comparing concurrent verbalization and retrospective reports. Each participant wore a microphone to record his thoughts while verbalizing them for the duration of nine holes of golf on three separate occasions. The researchers transcribed and coded this verbalized self-talk. Participants also completed a retrospective self-talk questionnaire at the conclusion of each round. Results suggest that participants’ concurrent verbalization and retrospective reports were inconsistent, specifically with regard to function (i.e., motivational versus instructional) and valence (i.e., positive, negative, and neutral), and that participants felt their concurrent verbalization more accurately reflected their experiences. The results support previous research that indicates that retrospective reports of self-talk may not provide accurate insight into what athletes actually say to themselves as they perform in their sports, while asserting that concurrent verbalization may be a more accurate representation of their self-talk experiences

    Low-lying bifurcations in cavity quantum electrodynamics

    Get PDF
    The interplay of quantum fluctuations with nonlinear dynamics is a central topic in the study of open quantum systems, connected to fundamental issues (such as decoherence and the quantum-classical transition) and practical applications (such as coherent information processing and the development of mesoscopic sensors/amplifiers). With this context in mind, we here present a computational study of some elementary bifurcations that occur in a driven and damped cavity quantum electrodynamics (cavity QED) model at low intracavity photon number. In particular, we utilize the single-atom cavity QED Master Equation and associated Stochastic Schrodinger Equations to characterize the equilibrium distribution and dynamical behavior of the quantized intracavity optical field in parameter regimes near points in the semiclassical (mean-field, Maxwell-Bloch) bifurcation set. Our numerical results show that the semiclassical limit sets are qualitatively preserved in the quantum stationary states, although quantum fluctuations apparently induce phase diffusion within periodic orbits and stochastic transitions between attractors. We restrict our attention to an experimentally realistic parameter regime.Comment: 13 pages, 10 figures, submitted to PR

    Uranium(III) coordination chemistry and oxidation in a flexible small-cavity macrocycle

    Get PDF
    U(III) complexes of the conformationally flexible, small-cavity macrocycle trans-calix[2]benzene[2]pyrrolide (L)2–, [U(L)X] (X = O-2,6-tBu2C6H3, N(SiMe3)2), have been synthesized from [U(L)BH4] and structurally characterized. These complexes show binding of the U(III) center in the bis(arene) pocket of the macrocycle, which flexes to accommodate the increase in the steric bulk of X, resulting in long U–X bonds to the ancillary ligands. Oxidation to the cationic U(IV) complex [U(L)X][B(C6F5)4] (X = BH4) results in ligand rearrangement to bind the smaller, harder cation in the bis(pyrrolide) pocket, in a conformation that has not been previously observed for (L)2–, with X located between the two ligand arene rings

    Dimethyl 2,2'-di-nitro-biphenyl-4,4'-di-carboxyl-ate.

    Get PDF
    The title compound, C16H12N2O8, exhibits two near-planar aromatic ester groups with ar-yl-ester dihedral angles of 2.1 (2) and 4.2 (3)°. The dihedral angle between the aromatic rings is 58.0 (1)°. The two nitro groups are tilted slightly from the plane of the aromatic rings, making dihedral angles of 14.1 (1) and 8.2 (2)°. In the crystal, mol-ecules are connected by weak C-H⋯O inter-actions, forming a three-dimensional network

    Surface magnetic canting in a ferromagnet

    Full text link
    The surface magnetic canting (SMC) of a semi-infinite film with ferromagnetic exchange interaction and competing bulk and surface anisotropies is investigated via a nonlinear mapping formulation of mean-field theory previously developed by our group [L. Trallori et al., Int. J. Mod. Phys. B 10, 1935-1988 (1996)], and extended to the case where an external magnetic field is applied to the system. When the field H is parallel to the film plane, the condition for SMC is found to be the same as that recently reported by Popov and Pappas [Phys. Rev. B 64, 184401 (2001)]. The case of a field H applied perpendicularly to the film plane is also investigated. In both cases, the zero-temperature equilibrium configuration is easily determined by our theoretical approach.Comment: 4 pages, 3 figure

    An Exact Universal Gravitational Lensing Equation

    Full text link
    We first define what we mean by gravitational lensing equations in a general space-time. A set of exact relations are then derived that can be used as the gravitational lens equations in all physical situations. The caveat is that into these equations there must be inserted a function, a two-parameter family of solutions to the eikonal equation, not easily obtained, that codes all the relevant (conformal) space-time information for this lens equation construction. Knowledge of this two-parameter family of solutions replaces knowledge of the solutions to the geodesic equations. The formalism is then applied to the Schwarzschild lensing problemComment: 12 pages, submitted to Phys. Rev.

    Lie Groups and mechanics: an introduction

    Full text link
    The aim of this paper is to present aspects of the use of Lie groups in mechanics. We start with the motion of the rigid body for which the main concepts are extracted. In a second part, we extend the theory for an arbitrary Lie group and in a third section we apply these methods for the diffeomorphism group of the circle with two particular examples: the Burger equation and the Camassa-Holm equation

    Crystal structure of dimethyl 9H-carbazole-2,7-di-carb-oxy-late.

    Get PDF
    In the title compound, C16H13NO4, the carbazole ring system is almost planar with non-H atoms possessing a mean deviation from planarity of 0.037 Å. The two ester groups are orientated trans to one another and tilted slightly from the mean plane of the carbazole ring system, making dihedral angles of 8.12 (6) and 8.21 (5)°. In the crystal, mol-ecules are linked by pairs of N-H⋯O hydrogen bonds forming inversion dimers. The dimers are linked by parallel slipped π-π inter-actions, forming slabs propagating along the b-axis direction [inter-centroid distance = 3.6042 (8) Å, inter-planar distance = 3.3437 (5) Å, slippage = 1.345 Å]

    Erratum: μ-Oxalato-bis-[bis-(triphenyl-phosphine)copper(I)] dichloro-methane disolvate. Corrigendum.

    Get PDF
    An erroneous claim in the paper by Royappa et al. [Acta Cryst. (2013), E69, m126] is corrected and a reference added for a previously published report of a closely related structure.[This corrects the article DOI: 10.1107/S1600536813002080.]

    Chemical Equilibration in Hadronic Collisions

    Full text link
    We study chemical equilibration in out-of-equilibrium Quark-Gluon Plasma using the first principles method of QCD effective kinetic theory, accurate at weak coupling. In longitudinally expanding systems--relevant for relativistic nuclear collisions--we find that for realistic couplings chemical equilibration takes place after hydrodynamization, but well before local thermalization. We estimate that hadronic collisions with final state multiplicities dNch/dη≳102{dN_\text{ch}}/{d\eta}\gtrsim 10^2 live long enough to reach approximate chemical equilibrium, which is consistent with the saturation of strangeness enhancement observed in proton-proton, proton-nucleus and nucleus-nucleus collisions.Comment: 7 pages, 3 figures, see also our companion paper arXiv:1811.03068, v2 small changes, published versio
    • …
    corecore