330 research outputs found

    Identifying Planetary Biosignature Impostors: Spectral Features of CO and O4 Resulting from Abiotic O2/O3 Production

    Full text link
    O2 and O3 have been long considered the most robust individual biosignature gases in a planetary atmosphere, yet multiple mechanisms that may produce them in the absence of life have been described. However, these abiotic planetary mechanisms modify the environment in potentially identifiable ways. Here we briefly discuss two of the most detectable spectral discriminants for abiotic O2/O3: CO and O4. We produce the first explicit self-consistent simulations of these spectral discriminants as they may be seen by JWST. If JWST-NIRISS and/or NIRSpec observe CO (2.35, 4.6 um) in conjunction with CO2 (1.6, 2.0, 4.3 um) in the transmission spectrum of a terrestrial planet it could indicate robust CO2 photolysis and suggest that a future detection of O2 or O3 might not be biogenic. Strong O4 bands seen in transmission at 1.06 and 1.27 um could be diagnostic of a post-runaway O2-dominated atmosphere from massive H-escape. We find that for these false positive scenarios, CO at 2.35 um, CO2 at 2.0 and 4.3 um, and O4 at 1.27 um are all stronger features in transmission than O2/O3 and could be detected with SNRs \gtrsim 3 for an Earth-size planet orbiting a nearby M dwarf star with as few as 10 transits, assuming photon-limited noise. O4 bands could also be sought in UV/VIS/NIR reflected light (at 0.345, 0.36, 0.38, 0.445, 0.475, 0.53, 0.57, 0.63, 1.06, and 1.27 um) by a next generation direct-imaging telescope such as LUVOIR/HDST or HabEx and would indicate an oxygen atmosphere too massive to be biologically produced.Comment: 7 pages, 4 figures, accepted to the Astrophysical Journal Letter

    Effects of electrical leakage currents on MEMS reliability and performance

    Get PDF
    Electrostatically driven MEMS devices commonly operate with electric fields as high at 108 V/m applied across the dielectric between electrodes. Even with the best mechanical design, the electrical design of these devices has a large impact both on performance (e.g., speed and stability) and on reliability (e.g., corrosion and dielectric or gas breakdown). In this paper, we discuss the reliability and performance implications of leakage currents in the bulk and on the surface of the dielectric insulating the drive (or sense) electrodes from one another. Anodic oxidation of poly-silicon electrodes can occur very rapidly in samples that are not hermetically packaged. The accelerating factors are presented along with an efficient early-warning scheme. The relationship between leakage currents and the accumulation of quasistatic charge in dielectrics are discussed, along with several techniques to mitigate charging and the associated drift in electrostatically actuated or sensed MEMS devices. Two key parameters are shown to be the electrode geometry and the conductivity of the dielectric. Electrical breakdown in submicron gaps is presented as a function of packaging gas and electrode spacing. We discuss the tradeoffs involved in choosing gap geometries and dielectric properties that balance performance and reliability

    Strange new worlds: comparative planetology of exoplanets and the Solar System

    Get PDF
    This is the final version. Available on open access from the American Astronomical Society via the DOI in this record This whitepaper discusses the striking diversity of exoplanets that could be detected by future observations and highlights the potential for comparative planetology to be performed with Solar System planets in the upcoming era of large, space-based flagship missions

    Surface and Temporal Biosignatures

    Full text link
    Recent discoveries of potentially habitable exoplanets have ignited the prospect of spectroscopic investigations of exoplanet surfaces and atmospheres for signs of life. This chapter provides an overview of potential surface and temporal exoplanet biosignatures, reviewing Earth analogues and proposed applications based on observations and models. The vegetation red-edge (VRE) remains the most well-studied surface biosignature. Extensions of the VRE, spectral "edges" produced in part by photosynthetic or nonphotosynthetic pigments, may likewise present potential evidence of life. Polarization signatures have the capacity to discriminate between biotic and abiotic "edge" features in the face of false positives from band-gap generating material. Temporal biosignatures -- modulations in measurable quantities such as gas abundances (e.g., CO2), surface features, or emission of light (e.g., fluorescence, bioluminescence) that can be directly linked to the actions of a biosphere -- are in general less well studied than surface or gaseous biosignatures. However, remote observations of Earth's biosphere nonetheless provide proofs of concept for these techniques and are reviewed here. Surface and temporal biosignatures provide complementary information to gaseous biosignatures, and while likely more challenging to observe, would contribute information inaccessible from study of the time-averaged atmospheric composition alone.Comment: 26 pages, 9 figures, review to appear in Handbook of Exoplanets. Fixed figure conversion error

    No phosphine in the atmosphere of Venus

    Get PDF
    The detection of phosphine (PH₃) has been recently reported in the atmosphere of Venus employing mm-wave radio observations (Greaves et at. 2020). We here demonstrate that the observed PH₃ feature with JCMT can be fully explained employing plausible mesospheric SO₂ abundances (~100 ppbv as per the SO₂ profile given in their figure 9), while the identification of PH₃ in the ALMA data should be considered invalid due to severe baseline calibration issues. We demonstrate this by independently calibrating and analyzing the ALMA data using different interferometric analysis tools, in which we observe no PH₃ in all cases. Furthermore, for any PH₃ signature to be produced in either ALMA or JCMT spectra, PH₃ needs to present at altitudes above 70 km, in stark disagreement with their photochemical network. We ultimately conclude that this detection of PH₃ in the atmosphere of Venus is not supported by our analysis of the data
    corecore