22 research outputs found

    Quantitative Technology Assessment in Space Mission Analysis

    Get PDF
    New technologies will need to be developed to create feasible concepts for NASA's ambitious missions of the future, but quantitative assessments of the impacts that technologies have on systems or architectures are sporadic and often inadequate. The Space Mission Analysis Branch at NASA's Langley Research Center is developing a quantitative technology assessment framework to address this issue with a vision of being able to understand the mission and system architecture impacts of technology development activities. A phased approach is being pursued to answer technology needs assessment and technology forecasting questions. First, the integration of subject matter experts, data collection, and data analysis techniques ensures that the framework is accessible and analyzable. Second, systems analysis determines the impact of key technologies from the first phase on systems, architectures, and campaigns. The goal of a quantitative technology assessment framework is to accelerate technology assessments, to improve the accuracy of those assessments, and to provide deeper insights into the impact of new technologies. Keywords: technology assessment, data analysis, systems analysis

    A COTS-Style Acquisition Strategy for Human Exploration Beyond LEO

    Get PDF
    The Evolvable Mars Campaign presents a long term strategy for NASA's Journey to Mars within a capability driven framework. By comparing each element to a set of criteria, this paper reviews the potential of acquiring those capabilities using a strategy similar to the Commercial Orbital Transportation Services program. The paper presents the criteria, assesses the elements against those criteria, and then discusses the suitability of each element to being developed using this acquisition strategy. Throughout the campaign, certain capabilities are well suited to being developed in this manner while others are not. This assessment is a snapshot in time, and should be revisited as the campaign and/or commercial capabilities change. This paper will explore each of these elements in the campaign and discuss how the COTS development andacquisition strategy could or could not be applied to those elements. This assessment will be based on theservices or functionality required in the campaign, and will use the best practices discussed above to create acase for or against a COTS-style acquisition strategy for each given element

    HAVOC: High Altitude Venus Operational Concept - An Exploration Strategy for Venus

    Get PDF
    The atmosphere of Venus is an exciting destination for both further scientific study and future human exploration. A lighter-than-air vehicle can carry either a host of instruments and probes, or a habitat and ascent vehicle for a crew of two astronauts to explore Venus for up to a month. The mission requires less time to complete than a crewed Mars mission, and the environment at 50 km is relatively benign, with similar pressure, density, gravity, and radiation protection to the surface of Earth. A recent internal NASA study of a High Altitude Venus Operational Concept (HAVOC) led to the development of an evolutionary program for the exploration of Venus, with focus on the mission architecture and vehicle concept for a 30 day crewed mission into Venus's atmosphere. Key technical challenges for the mission include performing the aerocapture maneuvers at Venus and Earth, inserting and inflating the airship at Venus, and protecting the solar panels and structure from the sulfuric acid in the atmosphere. With advances in technology and further refinement of the concept, missions to the Venusian atmosphere can expand humanity's future in space

    Understanding the Lunar System Architecture Design Space

    Get PDF
    Based on the flexible path strategy and the desire of the international community, the lunar surface remains a destination for future human exploration. This paper explores options within the lunar system architecture design space, identifying performance requirements placed on the propulsive system that performs Earth departure within that architecture based on existing and/or near-term capabilities. The lander crew module and ascent stage propellant mass fraction are primary drivers for feasibility in multiple lander configurations. As the aggregation location moves further out of the lunar gravity well, the lunar lander is required to perform larger burns, increasing the sensitivity to these two factors. Adding an orbit transfer stage to a two-stage lunar lander and using a large storable stage for braking with a one-stage lunar lander enable higher aggregation locations than Low Lunar Orbit. Finally, while using larger vehicles enables a larger feasible design space, there are still feasible scenarios that use three launches of smaller vehicles

    Implementing NASA's Capability-Driven Approach: Insight into NASA's Processes for Maturing Exploration Systems

    Get PDF
    NASA is engaged in transforming human spaceflight. The Agency is shifting from an exploration-based program with human activities focused on low Earth orbit (LEO) and targeted robotic missions in deep space to a more sustainable and integrated pioneering approach. Through pioneering, NASA seeks to address national goals to develop the capacity for people to work, learn, operate, live, and thrive safely beyond the Earth for extended periods of time. However, pioneering space involves more than the daunting technical challenges of transportation, maintaining health, and enabling crew productivity for long durations in remote, hostile, and alien environments. This shift also requires a change in operating processes for NASA. The Agency can no longer afford to engineer systems for specific missions and destinations and instead must focus on common capabilities that enable a range of destinations and missions. NASA has codified a capability driven approach, which provides flexible guidance for the development and maturation of common capabilities necessary for human pioneers beyond LEO. This approach has been included in NASA policy and is captured in the Agency's strategic goals. It is currently being implemented across NASA's centers and programs. Throughout 2014, NASA engaged in an Agency-wide process to define and refine exploration-related capabilities and associated gaps, focusing only on those that are critical for human exploration beyond LEO. NASA identified 12 common capabilities ranging from Environmental Control and Life Support Systems to Robotics, and established Agency-wide teams or working groups comprised of subject matter experts that are responsible for the maturation of these exploration capabilities. These teams, called the System Maturation Teams (SMTs) help formulate, guide and resolve performance gaps associated with the identified exploration capabilities. The SMTs are defining performance parameters and goals for each of the 12 capabilities, developing maturation plans and roadmaps for the identified performance gaps, specifying the interfaces between the various capabilities, and ensuring that the capabilities mature and integrate to enable future pioneering missions. By managing system development through the SMTs instead of traditional NASA programs and projects, the Agency is shifting from mission-driven development to a more flexible, capability-driven development. The process NASA uses to establish, integrate, prioritize, and manage the SMTs and associated capabilities is iterative. NASA relies on the Human Exploration and Operation Mission Directorate's SMT Integration Team within Advanced Exploration Systems to coordinate and facilitate the SMT process. The SMT Integration team conducts regular reviews and coordination meetings among the SMTs and has developed a number of tools to help the Agency implement capability driven processes. The SMT Integration team is uniquely positioned to help the Agency coordinate the SMTs and other processes that are making the capability-driven approach a reality. This paper will introduce the SMTs and the 12 key capabilities they represent. The role of the SMTs will be discussed with respect to Agency-wide processes to shift from mission-focused exploration to a capability-driven pioneering approach. Specific examples will be given to highlight systems development and testing within the SMTs. These examples will also show how NASA is using current investments in the International Space Station and future investments to develop and demonstrate capabilities. The paper will conclude by describing next steps and a process for soliciting feedback from the space exploration community to refine NASA's process for developing common exploration capabilities

    High Altitude Venus Operational Concept (HAVOC): Proofs of Concept

    Get PDF
    The atmosphere of Venus is an exciting destination for both further scientific study and future human exploration. A recent internal NASA study of a High Altitude Venus Operational Concept (HAVOC) led to the development of an evolutionary program for the exploration of Venus, with focus on the mission architecture and vehicle concept for a 30-day crewed mission into Venus's atmosphere at 50 kilometers. Key technical challenges for the mission include performing the aerocapture maneuvers at Venus and Earth, inserting and inflating the airship at Venus during the entry sequence, and protecting the solar panels and structure from the sulfuric acid in the atmosphere. Two proofs of concept were identified that would aid in addressing some of the key technical challenges. To mitigate the threat posed by the sulfuric acid ambient in the atmosphere of Venus, a material was needed that could protect the systems while being lightweight and not inhibiting the performance of the solar panels. The first proof of concept identified candidate materials and evaluated them, finding FEP-Teflon (Fluorinated Ethylene Propylene-Teflon) to maintain 90 percent transmittance to relevant spectra even after 30 days of immersion in concentrated sulfuric acid. The second proof of concept developed and verified a packaging algorithm for the airship envelope to inform the entry, descent, and inflation analysis

    High Altitude Venus Operations Concept Trajectory Design, Modeling and Simulation

    Get PDF
    A trajectory design and analysis that describes aerocapture, entry, descent, and inflation of manned and unmanned High Altitude Venus Operation Concept (HAVOC) lighter-than-air missions is presented. Mission motivation, concept of operations, and notional entry vehicle designs are presented. The initial trajectory design space is analyzed and discussed before investigating specific trajectories that are deemed representative of a feasible Venus mission. Under the project assumptions, while the high-mass crewed mission will require further research into aerodynamic decelerator technology, it was determined that the unmanned robotic mission is feasible using current technology

    In-Space Assembly Capability Assessment for Potential Human Exploration and Science Applications

    Get PDF
    Human missions to Mars present several major challenges that must be overcome, including delivering multiple large mass and volume elements, keeping the crew safe and productive, meeting cost constraints, and ensuring a sustainable campaign. Traditional methods for executing human Mars missions minimize or eliminate in-space assembly, which provides a narrow range of options for addressing these challenges and limits the types of missions that can be performed. This paper discusses recent work to evaluate how the inclusion of in-space assembly in space mission architectural concepts could provide novel solutions to address these challenges by increasing operational flexibility, robustness, risk reduction, crew health and safety, and sustainability. A hierarchical framework is presented to characterize assembly strategies, assembly tasks, and the required capabilities to assemble mission systems in space. The framework is used to identify general mission system design considerations and assembly system characteristics by assembly strategy. These general approaches are then applied to identify potential in-space assembly applications to address each challenge. Through this process, several focus areas were identified where applications of in-space assembly could affect multiple challenges. Each focus area was developed to identify functions, potential assembly solutions and operations, key architectural trades, and potential considerations and implications of implementation. This paper helps to identify key areas to investigate were potentially significant gains in addressing the challenges with human missions to Mars may be realized, and creates a foundation on which to further develop and analyze in-space assembly concepts and assembly-based architectures

    Rule-based graph theory to enable exploration of the space system architecture design space

    Get PDF
    NASA's current plans for human spaceflight include an evolutionary series of missions based on a steady increase in capability to explore cis-lunar space, the Moon, near-Earth asteroids, and eventually Mars. Although the system architecture definition has the greatest impact on the eventual performance and cost of an exploration program, selecting an optimal architecture is a difficult task due to the lack of methods to adequately explore the architecture design space and the resource-intensive nature of architecture analysis. This research presents a modeling framework to mathematically represent and analyze the space system architecture design space using graph theory. The framework enables rapid exploration of the design space without the need to limit trade options or the need for user interaction during the exploration process. The architecture design space for three missions in a notional evolutionary exploration program, which includes staging locations, vehicle implementation, and system functionality, for each mission destination is explored. Using relative net present value of various system architecture options, the design space exploration reveals that the launch vehicle selection is the primary driver in reducing cost, and other options, such as propellant type, staging location, and aggregation strategy, provide less impact.PhDCommittee Chair: Wilhite, Alan; Committee Member: Chytka, Trina; Committee Member: Russell, Ryan; Committee Member: Schrage, Daniel; Committee Member: Volovoi, Vital
    corecore