

Havoc: High Altitude Venus Operational Concept AIAA SPACE 2015 Conference, Pasadena, CA August 31 – September 2, 2015

> Dr. Dale Arney and Chris Jones NASA Langley Research Center Space Mission Analysis Branch

An Exploration Strategy for Venus

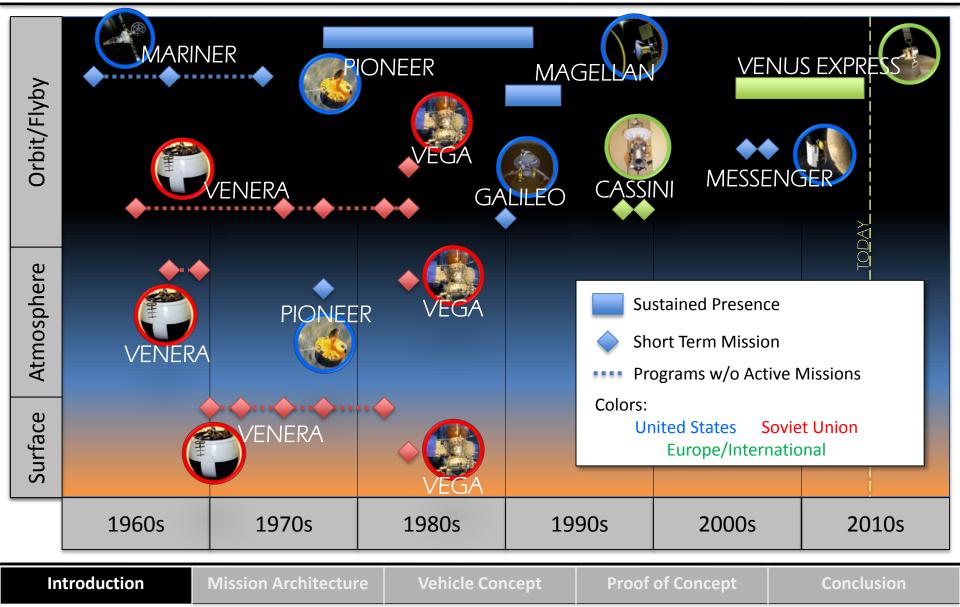
Contributors

Craig Hutchinson S	N	lission Architectur	' و			
Craig Hutchinson S			~			
Craig Hutchinson—S	МАВ	Paul Speth—SMAB	D.R. Ko	mar—VAB		
Matt Simon—SMA	AB	Taneal Fulton—LARSS	Bill Moore—NIA			
Vehicle Concept						
Sharon Jefferies—SI	MAB Ra	afael Lugo—AMA/AFES	B John Van Norm	an—AMA/AFESB		
Dave Cornelius—A	MA	Mark Moore—ASAB	Carlie Zum	walt—AFESB		
John Dec—STSB	B To	m Ozoroski—AMA/AS/	AB Alan Wi	lhite—NIA		
Proof of Concept						
Dave North—SMA	AB A	nthony Hennig—LARS	S James I	Lana—RD		
Julie Williams-Byrd—	SMAB	Jessica Snyder—LARSS				
Zack Bassett—LAR	RSS	Mia Siochi—RD	Gary Wain	wright—AMC		
Jim Clark—LARS	S	Godfrey Sauti—RD	Rob Andr	rews—AMC		
		Study Support				
J.D. Reeves—SMA	AB	Dave Helton—ACL	Josh Sa	ims—ACL		
Kevin Earle—SMA	AB	Bob Evangelista—ACL	Leanne Tro	outman—ACL		
Nicole McDonald—LAMI	PS/SMAB	Chris Keblitis—ACL				
Kandyce Goodliff—S	MAB	Kevin Greer—ACL				
Introduction Missi	on Architecture	Vehicle Concept	Proof of Concept	Conclusion		

Humans as a spacefaring civilization: Humans explore to...

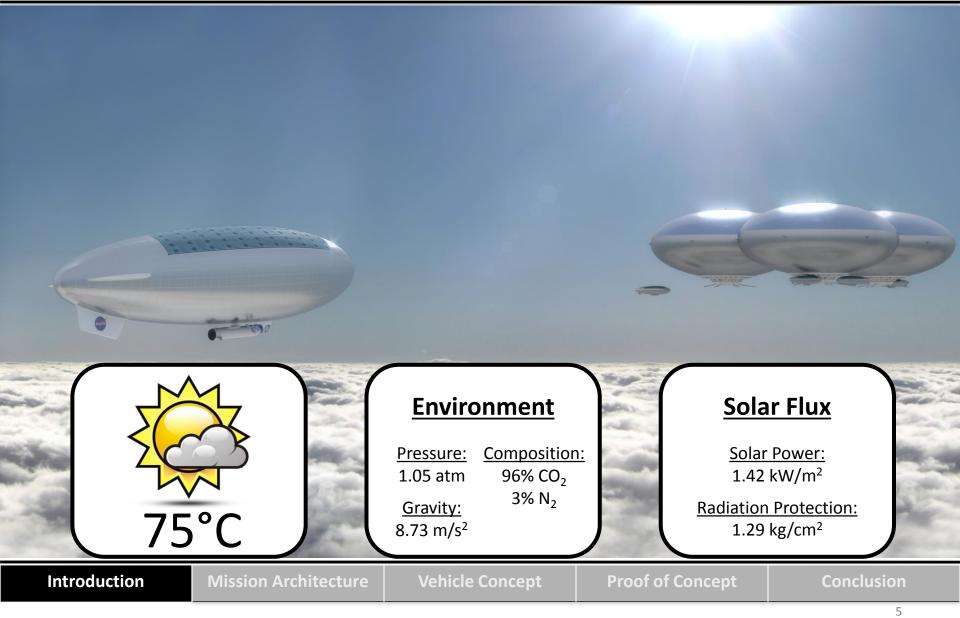
- Satisfy curiosity
- Acquire resources
- Start a new life

Venus is a destination for humans to reside


- Nearest planet to Earth
- Abundance of useful resources: energy, carbon, oxygen, nitrogen
- Atmosphere is a hospitable environment

Venus as a stepping stone to Mars

- Orbital mechanics:
 - Shorter missions (14 month total duration) with similar propulsion requirements
 - Abort-to-Earth available anytime after Venus arrival
- Similar technologies are required and/or can be used: long-duration habitats, aerobraking/aerocapture, carbon dioxide processing
- Serve as a test case for operations to/at/from another world


What does the past look like?

Venus Atmosphere at 50 km

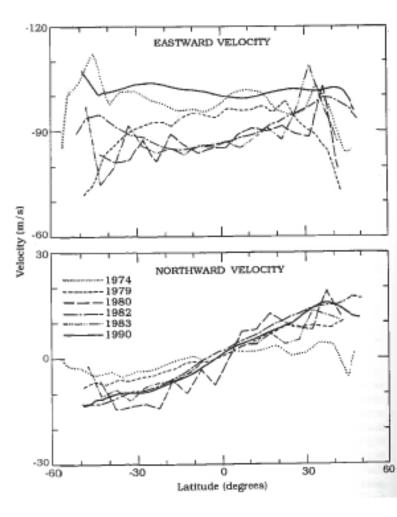
Comparison of Venus, Earth, and Mars

	<u>Surface</u>	<u>At 50 km</u>				
Temperature	462°C	75°C	Temperature	15°C	Temperature	-63°C
Solar Power	661 W/m²	1418 W/m ²	Solar Power	1060 W/m ²	Solar Power	590 W/m ²
Rad. Shielding	> 8280 g/cm ²	1290 g/cm ²	Rad. Shielding	1020 g/cm ²	Rad. Shielding	16 g/cm ²
Pressure	9,330 kPa	106.6 kPa	Pressure	101.3 kPa	Pressure	0.64 kPa
Density	64.79 kg/m ³	1.594 kg/m ³	Density	1.240 kg/m ³	Density	0.016 kg/m ³
Gravity	8.87 m/s ²	8.73 m/s ²	Gravity	9.81 m/s²	Gravity	3.71 m/s ²
Introduction	Mission	n Architecture	Vehicle Concept	Proof of Co	oncept Co	onclusion

Images: http://apod.nasa.gov/apod/ap050903.html. http://earthobservatorv.nasa.gov/IOTD/view.php?id=77085. http://apod.nasa.gov/apod/ap010718.html

Venus Evolutionary Exploration Program

Phase 1: Robotic Exploration	
Phase 2: 30-day Crew to Orbit	
Phase 3: 30-day Crew to Atmosphere	
Phase 4: 1-year Crew to Atmosphere	
Phase 5: Permanent Human Presence	
Introduction Mission Arch	itecture Vehicle Concept Proof of Concept Conclusion


Mission Operations Overview

- Longitudinal winds of 85 to 100 m/s at Equator → ~110 hrs to circle planet
 - Northward winds up to 5 m/s
- Airship "rides" longitudinal winds while using propulsion to counter poleward drift
- Daytime Operations:
 - Shortest day is ~44 hrs.
 - Power systems sized for dash velocity: 15 m/s
- Nighttime Operations:
 - Longest night is ~66 hrs.
 - Energy storage sized for low energy vel.: 3 m/s
 - Poleward drift is countered with higher daytime velocity

Payload

- Science Instruments (Robotic and Human)
- Atmospheric Habitat (Human only)
- Ascent Vehicle and Habitat (Human only)

Introduction

Mission Architecture

Vehicle Concept

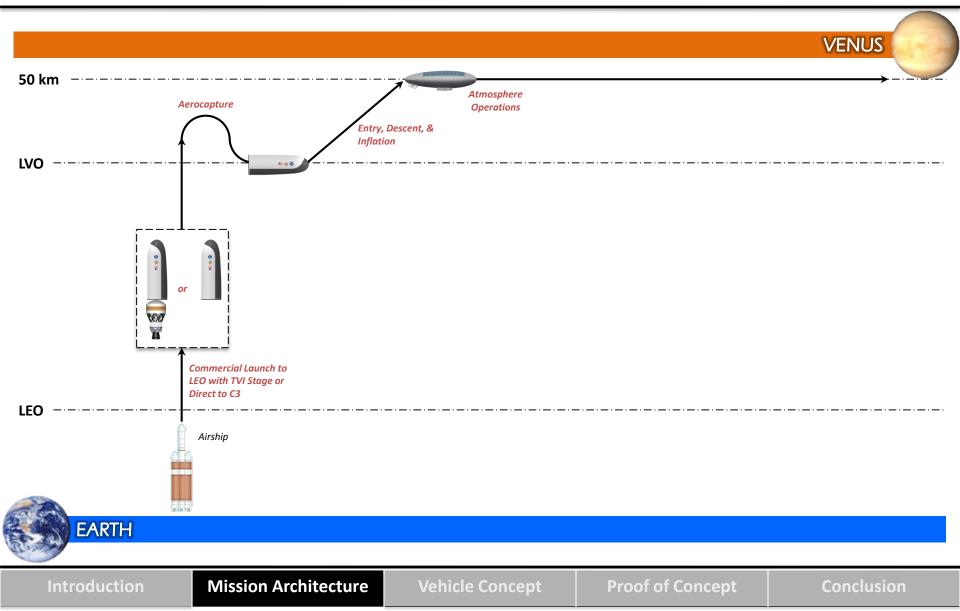
Proof of Concept

Conclusion

nage:Bougher, Hunten, and Phillips, Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, University of Arizona Press, Tucson, AZ, p. 466, 1997

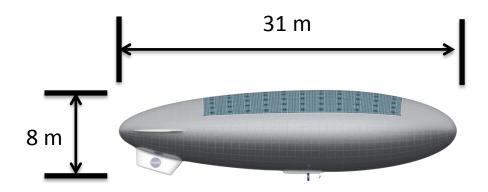
Phase 1: Robotic Exploration

Introduction


Mission Architecture

Vehicle Concept

Proof of Concept


Conclusion

Robotic Concept of Operations

Airship Concept – Robotic Mission

Element	Element Mass		Re	equirement	Value	
Par	yload	750 kg			Volume	1,118 m ³
Helium	Tanks	118 96 kg		Ops Re	egen Total Power	9.1 2.5 11.6 kWe
Hull 201 kg				Solar Array Area	50.4 m ²	
Power and Propulsion		217 kg			Energy Storage	92.9 kWh
Total		1,382 kg	Energy Storage Tim		ergy Storage Time	66 hrs
Introduction M	lission A	rchitecture	Vehicle (Concept	Proof of Concept	Conclusion

Science Platform Options

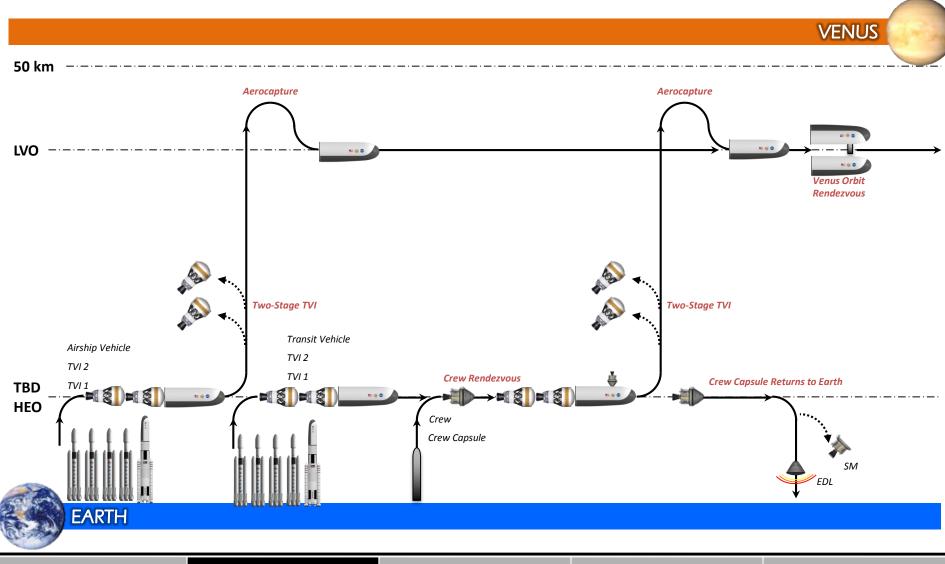
	Platform			Drop Probes	Drop Balloons	Lander
	Notional Mass Range			50-200 kg	50-200 kg	650-750 kg
rstand bheric evolution, e history.	A. How did the atmosphere of Venus form and evolve?					
	B. What is the nature of the radiative and dynamical energy balance on Venus (e.g. super-rotation and greenhouse)?	0		0	0	0
B. What is the nature of the radiative and dynamical energy balance on Venus (e.g. super-rotation and greenhouse)? C. What are the morphology, chemical makeup, and variability of the Venus clouds, their roles in the radiative/dynamical energy balance, and impact on climate? Does habitable zone harbor life?		0		0	0	
. Understand the nature of interior- surface- atmosphere interactions.	A. Did Venus ever have surface or interior liquid water and what role has the greenhouse effect had on climate through Venus' history?		0	0	0	
II. Understa the nature interior- surface- atmosphe interactior	B. How have the interior, surface, and atmosphere interacted as a coupled climate system over time?	0	0	0	0	0
Determine evolution he surface d interior.	A. How is Venus releasing its heat now and how is this related to resurfacing and outgassing? Has the style of tectonics or resurfacing varied with time?	0	0	0	0	0
III. Dete the evo of the s and in	B. How did Venus differentiate and evolve over time? Is the crust nearly all basalt or are there significant volumes of more differentiated (silica-rich) crust?	0	0			0

Legend: • Major Contribution, • Moderate Contribution, • Minor Contribution

Introduction

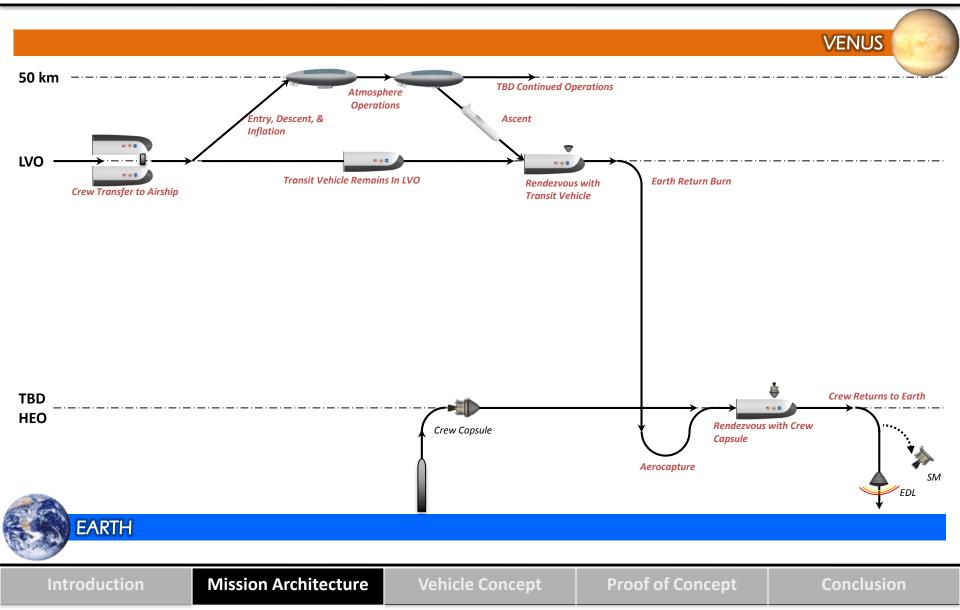
Phase 3: 30-Day Human Exploration

Introduction

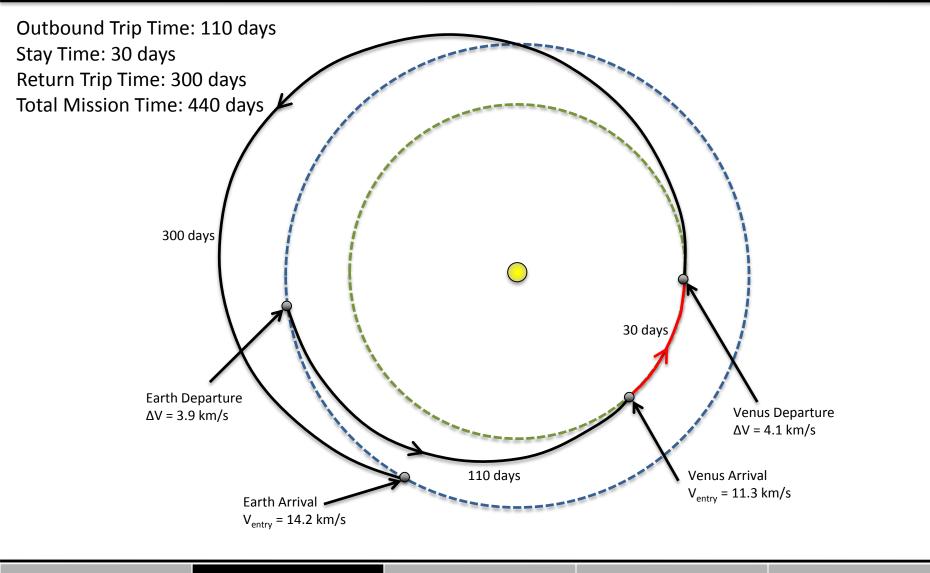

Mission Architecture

Vehicle Concept

Proof of Concept

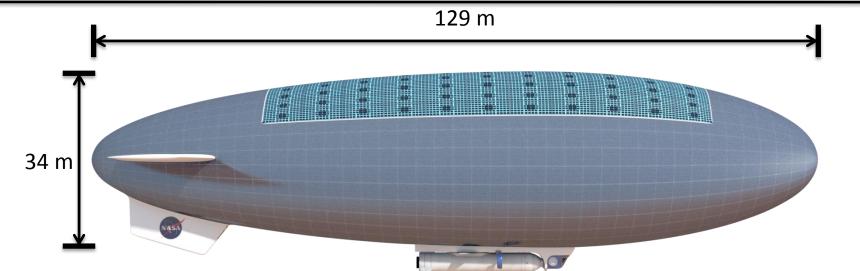

Conclusion

Human Concept of Operations (1 of 2)


Introduction

Human Concept of Operations (2 of 2)

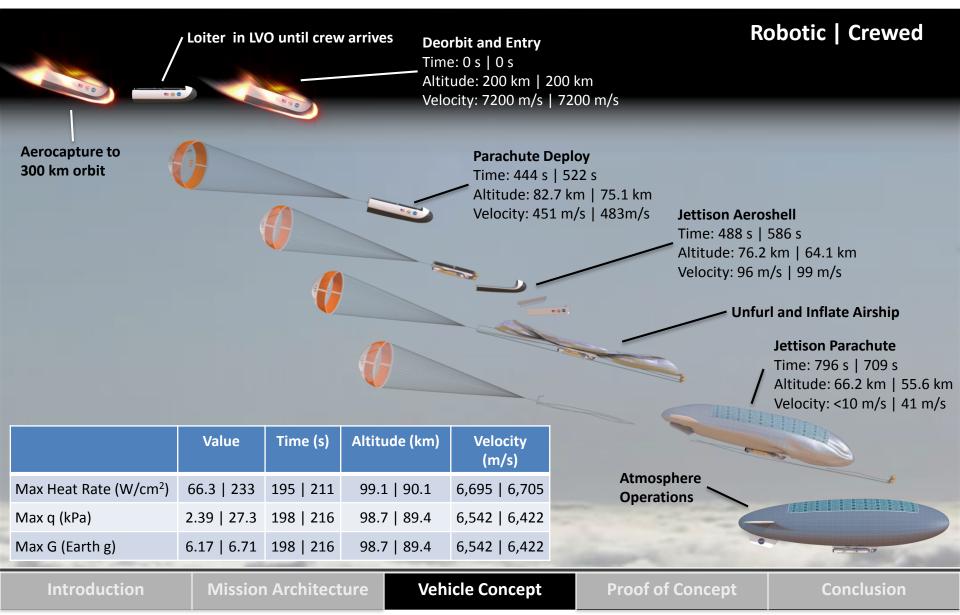
Round-Trip Venus Mission with 30 Day Stay



Element	Mass (t)
Atmospheric Habitat	5.1
Ascent Habitat	2.2
Ascent Vehicle	62.7
Airship	25.8
EDI and Aerocapture	33.3
Trans-Venus Injection Stage 2	109.4
Trans-Venus Injection Stage 1	109.4
IMLEO	348.5

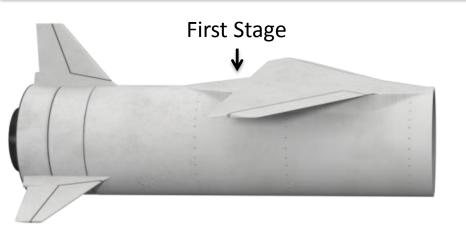
Element	Mass (t)
Transit Habitat	20.2
Trans-Earth Injection Stage	52.4
Aerocapture	26.5
Trans-Venus Injection Stage 2	63.3
Trans-Venus Injection Stage 1	103.9
IMLEO	266.3

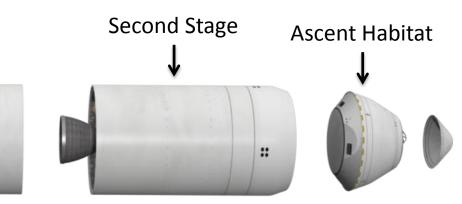
Introduction Mission Architecture	Vehicle Concept	Proof of Concept	Conclusion
-----------------------------------	-----------------	------------------	------------


Airship Concept – Human Mission

Element Mass		Re	equirement	Value
Payload	70,000 kg		Volume	77,521 m ³
Helium Tanks	8,183 6,623 kg	Ops Re	egen Total Power	187 53 240 kWe
Hull 6,455 kg			Solar Array Area	1,044 m²
Power and Propulsion	4,511 kg		Energy Storage	1,959 kWh
Total 95,776 kg		Ene	ergy Storage Time	66 hrs
Introduction Mission A	rchitecture Vehicle (Concept	Proof of Concept	Conclusion

Aerocapture, Entry, Descent, and Inflation Profile


Habitat Overview



Transit Habitat	Atmospheric Habitat	Ascent Habitat
2 crew, 400 days	2 crew, 30 days	2 crew, up to 1 day
Contingency EVA only	No EVA	No EVA
Similar to DSH: 20.2 t	Similar to SEV: 5.1 t	Similar to small capsule: 2.2 t
44 m ³ at 1 atm	21 m ³ at 1 atm	4.6 m ³ at 1 atm
Power: 12 kWe	Power: 3 kWe	Power: 1 kWe

Venus Ascent Vehicle

Mission Parameters

- Ascend from 50 km to orbit to rendezvous with TEI stage and transit habitat
- Estimated 9,000 m/s total ΔV

Configuration

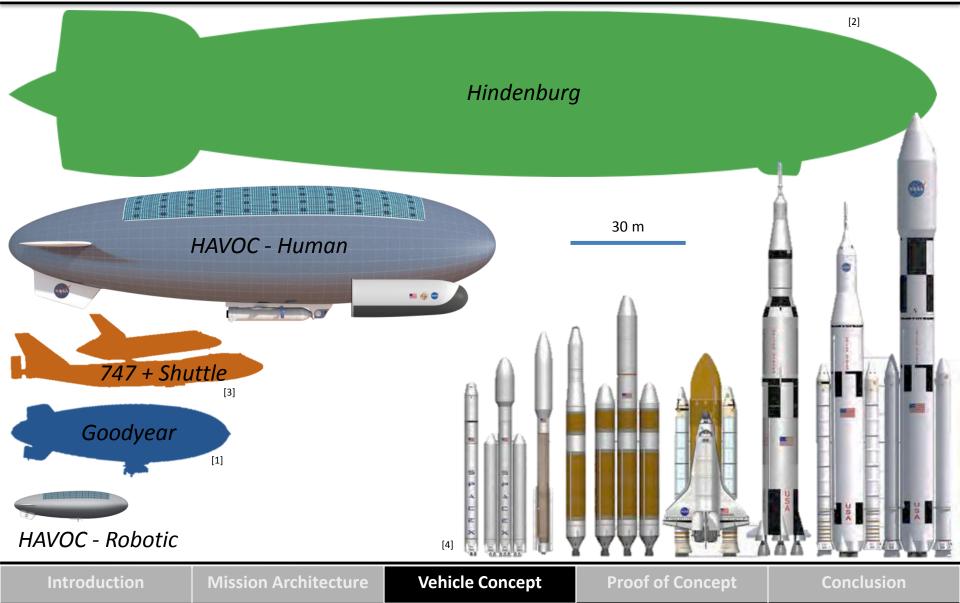
- 2 Crew, Minimal Duration Ascent Habitat
- Two stage ascent
- LOX/RP-1 propellant (easier thermal management than cryogenic fuels)
- Estimated 63 t Gross Mass

Introduction	Mission Architecture	Vehicle Concept	Proof of Concept	Conclusion

Conclusion

Introduction

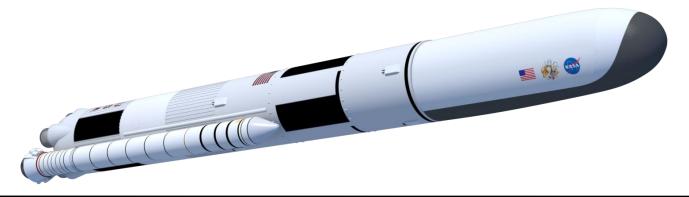
Mission Architecture


Vehicle Concept

Proof of Concept

Conclusion

Venus Airship Size Comparison



Introduction	Mission Architecture	Vehicle Concept	Proof of Concept	Conclusion

Summary

- HAVOC developed an evolutionary exploration plan that presents Venus as another destination for human exploration in space
- Initial analysis shows that robotic and human exploration of Venus with airships is feasible
 - Capability Development Needs: human-scale aeroentry vehicles, advanced supersonic decelerators, long-duration cryogenic storage, Venus and Earth aerocapture, rapid airship inflation during descent
 - Many technologies and capabilities are complementary to Mars missions
- Deeper dives into sizing, trajectories, and operations would refine architectural and vehicle understanding
- Venus, with its relatively hospitable upper atmosphere, can play a role in humanity's future in space.

Backup Slides

Introduction

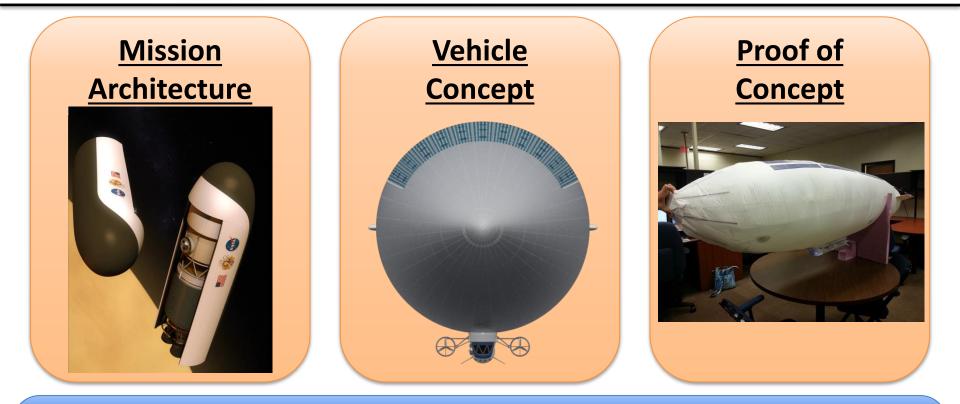
Mission Architecture

Vehicle Concept

Proof of Concept

Conclusion

References



- 1. Goodyear blimp picture: Stuart Grout, <u>http://www.flickr.com/photos/pigpilot/7132847251/</u>
- 2. Hindenburg outline: <u>http://en.wikipedia.org/wiki/File:Building_and_ship_comparison_to_the_Pentagon2.svg</u>
- 3. Shuttle Carrier Aircraft picture from Dryden 747 SCA Graphics Collection: http://www.dfrc.nasa.gov/Gallery/Graphics/B-747-SCA/index.html
- 4. Launch vehicle comparison from "NASA's Space Launch System: A New National Capability"

Introduction	Mission Architecture	Vehicle Concept	Proof of Concept	Conclusion

HAVOC Products

Deliverables

Robotic and crewed Venus Reference Architectures Platform to support robotic and crewed missions

Demonstrations of sulfuric acid resistance and vehicle packaging/deployment

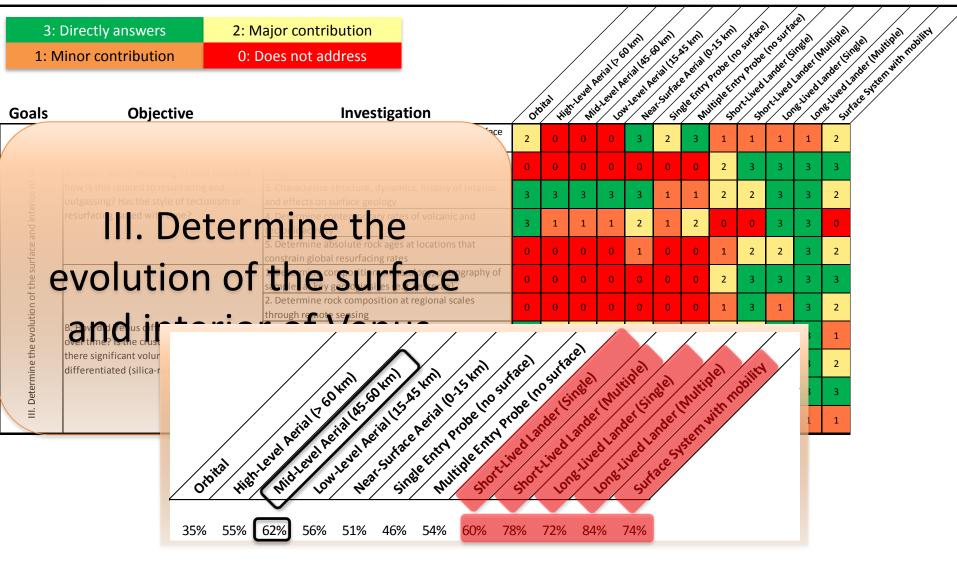
Science Objectives (VEXAG—Venus Exploration Analysis Group)

- I. Understand atmospheric formation, evolution, and climate history on Venus.
- II. Understand the nature of interior-surface-atmosphere interactions over time, including whether liquid water was ever present.
- III. Determine the evolution of the surface and interior of Venus.

Human Objectives

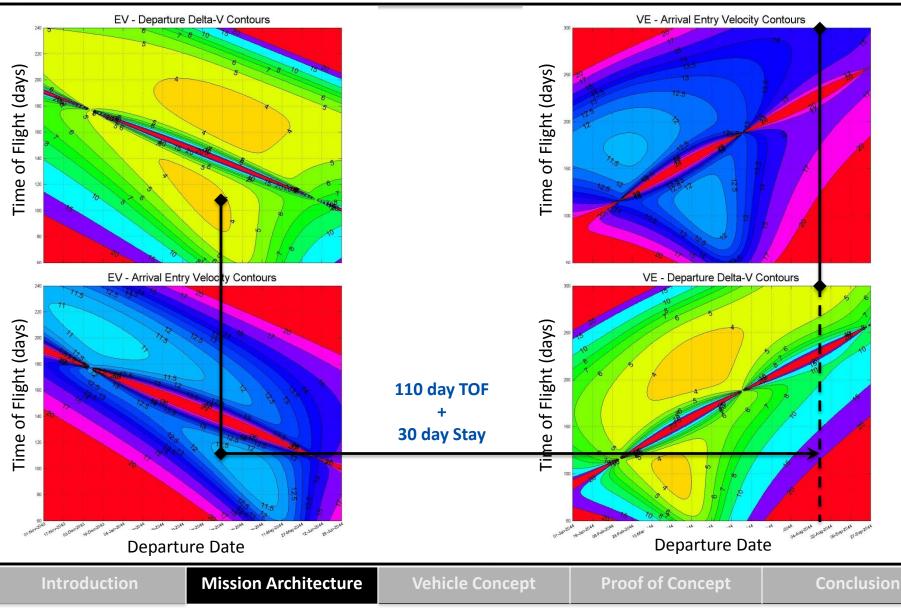
- IV. Reduce risks and advance technologies for human exploration of the solar system.
 - A. Demonstrate the ability for humans to survive and operate in deep space and around planetary bodies.
 - B. Develop advanced technologies that will enable humans to visit planetary destinations.

Introduction Mission Architecture Vehicle Concept Proof of Concept Conclusion


VEXAG Investigations and Platforms (1 of 2)

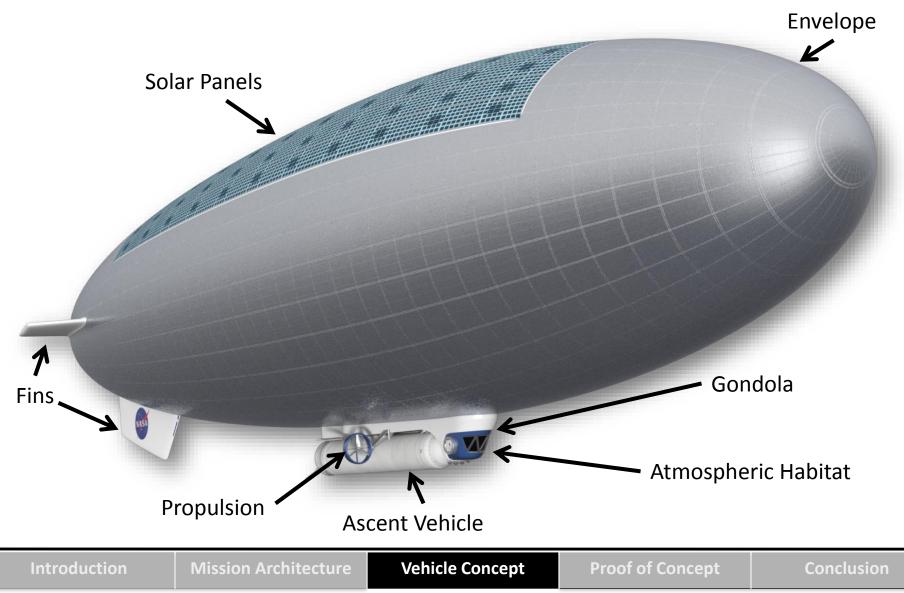
3: Directly answers 2: Major contribution 1: Minor contribution 0: Does not address Goals Objective Investigation														
	Thinker contribution					erial,	erial	erial	ener	Probe	NPR	ande	ande	ander ander kernwi
Goals	Goals Objective Investigation					dievel 1	N ¹ Evel P	at Suffat	ele Entry	Jitiple En	still she	ort-liveo Lor	Bilived .	ined Street
			0	3	3	3	3	3	3	3	3	3	3	3
tion			0	3	3	3	3	3	3	3	3	3	3	3
n, evolu es.	Understand	atmospheric	2	3	3	3	2	1	1	2	2	3	3	2
/e	dynamical energy balance on Venus (e.g.	2. Determine atmospherie realative balance and	2	2	3	3	1	2	3	0	0	0	0	0
eric fo	ormation, ev	temperature profile (surface to 140 km)	1	3	3	3	1	1	1	0	0	0	0	0
hq d	their roles in the radiative/dynamical energy balance, and impact on climate? Does habitable zone harbor life?	1. Characterize meteorology/chemistry of middle cloud	1	1	3	1	0	2	3	0	0	0	0	0
Jir and at		Comosition, production & loss, role in adjance palance	1	1	3	1	0	2	3	0	0	0	0	0
nderst		3. Characterize lightning/discharge strength, frequency, variation; determine role in trace gas/aerosols	2	2	2	2	0	0	0	0	0	0	0	1
		4. Characterize biologically-relevant cloud/gas chemistry, including 13C/12C and complex organics	1	3	3	3	3	3	3	3	3	3	3	3
					3	3	3	3	3	3	3	3	3	3
II. Understand interior,						2								
of inte ons ov	venus history:	trapped in surface rocks	0	0	0	0	0	0	0	2	3	2	3	3
nature iteracti	urface, and	atmosphere	0	3	3	3	3	3	3	3	3	3	3	3
the re ii eth	B. How have the interior, surface, and	2. Evaluate characteristics of weathering rinds and	0	0	0	0	0	0	0	2	3	3	3	3
B. How have the interior, surface, and atmosthere interacted as a coupled climat sistance of the activitie and the straight of			2	2	2	2	2	1	2	0	1	0	1	1
rl. Un a inclı		4. Determine sulfur cycle from surface isotopic ratios and atmospheric measurements of sulfur compounds	2	2	2	2	2	1	2	0	1	0	1	1
	ntroduction Missio	n Architecture Vehicle Co	ncep	ot		Ρ	roo	f of	Con	icep	t			Conclusion

VEXAG Investigations and Platforms (2 of 2)



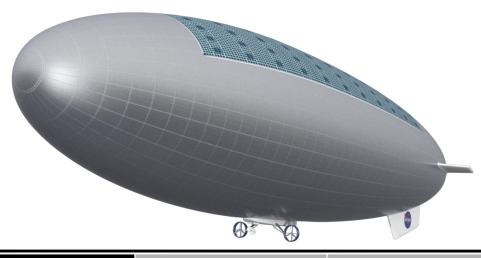
Introduction

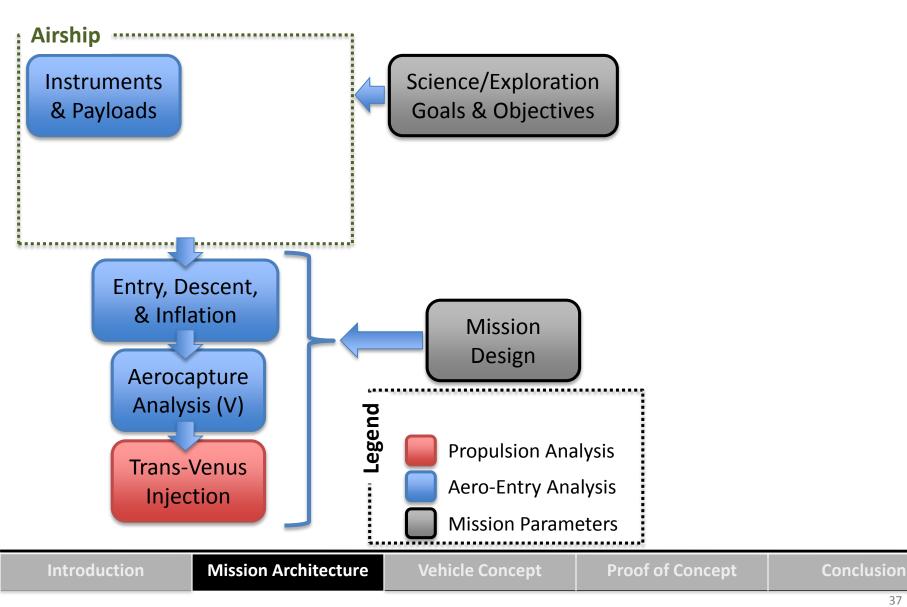
Interplanetary Trajectory for 30 Day Mission



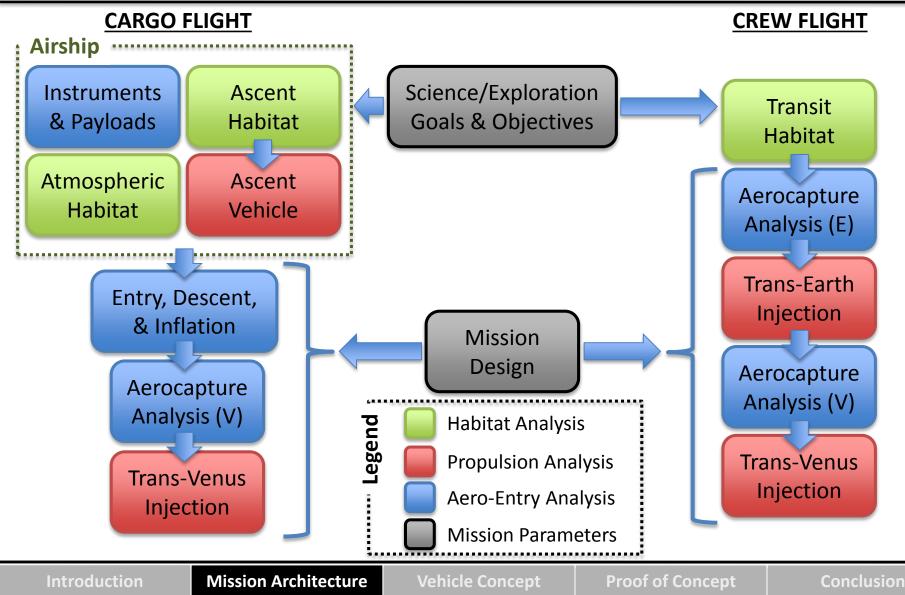
	Direct (or Earth Orbit Rendezvous, EOR)	Venus Orbit Rendezvous (VOR)	Venus Atmosphere Rendezvous (VAR)
Mass	 Earth departure stack is large Aerocapture stack is likely prohibitive in near term 	 Aerocapture stack is large but feasible 	 Could use ISRU for ascent propellant (reduce delivered mass)
Operational Complexity	 Rendezvous in Earth orbit similar to other in-space assembly operations 	 Rendezvous in Venus orbit poses time delay issues 	• Atmospheric rendezvous is challenging for early missions
Abort Options	 Quicker abort during rendezvous/ integration operations 	 Abort to Earth from Venus (~300 days) during rendezvous operations 	 No abort options during rendezvous (cannot ascend to TEI stage)

Introduction	Mission Architecture	Vehicle Concept	Proof of Concept	Conclusion


Airship Concept



Element	Mass (kg)
Payload and Instruments	750
Airship	652
EDI and Aerocapture	1,049
Cruise Stage	122
Trans-Venus Injection Stage	4,604
IMLEO	7,157


Introduction	Mission Architecture	Vehicle Concept	Proof of Concept	Conclusion
--------------	----------------------	-----------------	------------------	------------

Human Mission Analysis (Venus Orbit Rendezvous)

Venus Flagship Mission Study (2009) Balloon Instrument Capabilities—Robotic Mission

Table 4	4.10: Balloon GCMS Measurement Requirements.	Table 4.12: Balloo	n Net Flux Radiometer Measurement Requirements.
Resolution	0.1 AMU	Resolution	11 look angles from nadir to zenith
	He = 15, other noble gases = 75, CO = 75, sulfur compounds = 200 including two 3 hour	Frequency of measurement	Every 30 minutes
	campaigns with a spectrum acquired every 20 minutes	Range of measurement	Two channels, 0.2 to 3 µm and 0.8 to 25 µm
Range of measurement	1 - 150 AMU	Sensitivity	SN >200 from 0.2 to 3 µm, SN >100 for 8 to 25 µm
Sensitivity	0.1 nnh Xe Kr	Acquircour	260/ from 0.0 to 0

Table 4.9: Balloon Instruments.

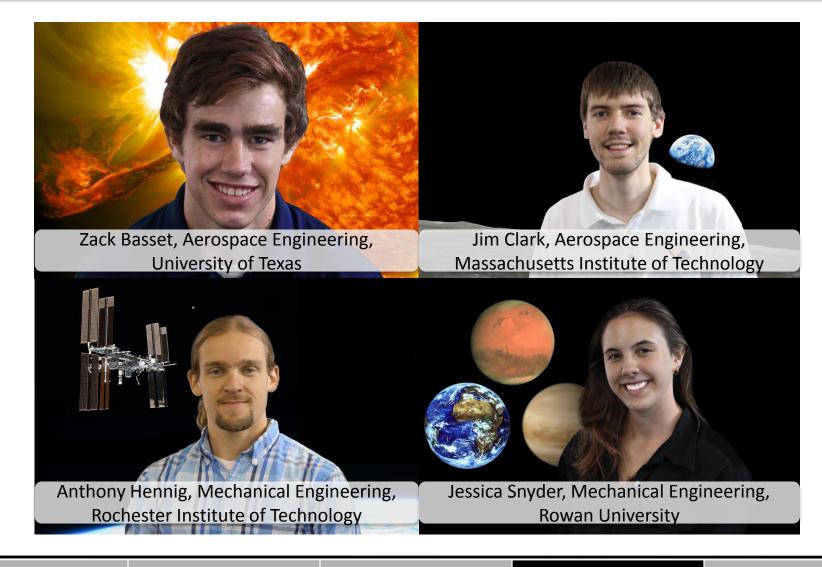
Instrument	Mass (kg)	Power (W)	Source or Proxy
Gas Chromatograph Mass Spectrometer	11	40	Huygens, VCAM
Thermocouple, Anemometer, Pressure Transducer, Accelerometer	2	3.2	MVACS, ATMIS
Radio Tracking	0	0	-
Net Flux Radiometer	2.3	4.6	Galileo Probe
Magnetometer	1	2	JPL internal studies
Nephelometer	0.5	1.2	Pioneer Venus
Lighting Detector	0.5	0.5	FAST
TOTAL	17.3	51.5	

Range of measurement	1 – 100 m/sec
Accuracy	±10 cm/s between v = 1 – 10 m/sec; ±100 cm/s between v = 10 – 100 m/sec Wind direction ±20°
Constraints	Operates in H ₂ SO ₄ /H ₂ O aerosol environment

Introduction

Mission Architecture

Vehicle Concept


Proof of Concept

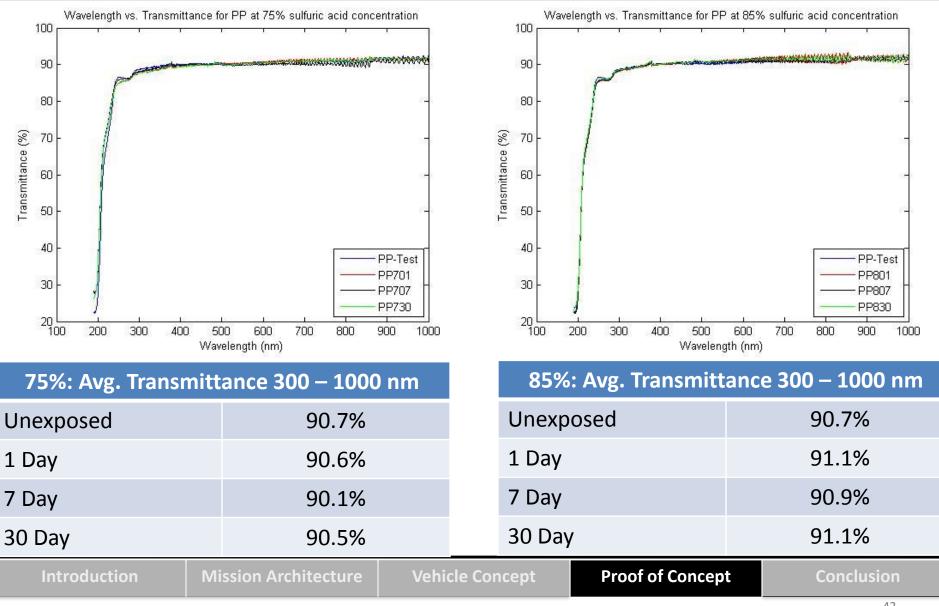
Conclusion

Instrument Data Source: Hall, Jeffery et al. Venus Flagship Mission Study: Report of the Venus Science and Technology Definition Team. Task Order NMO710851, 17 April 2009.

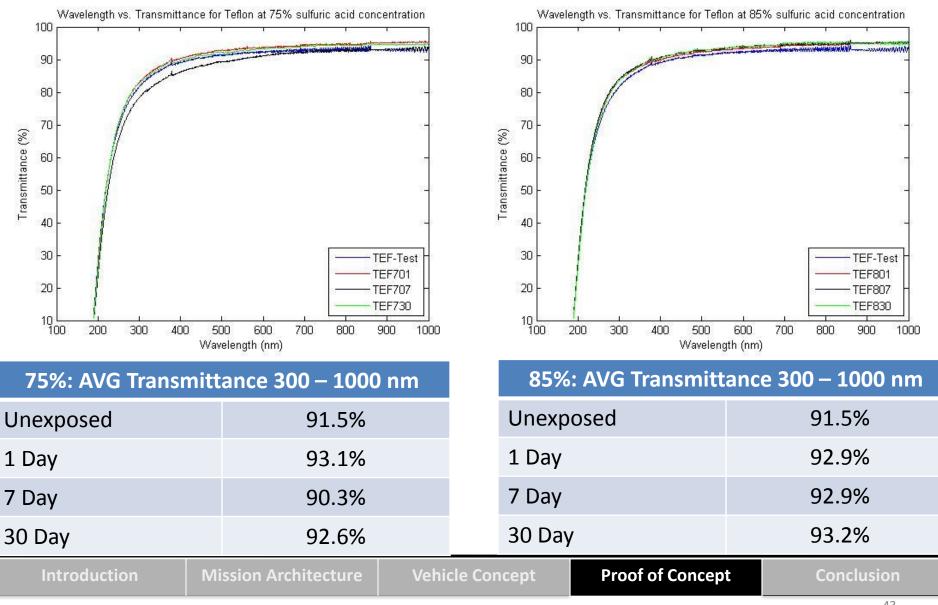
Summer LARSS Students

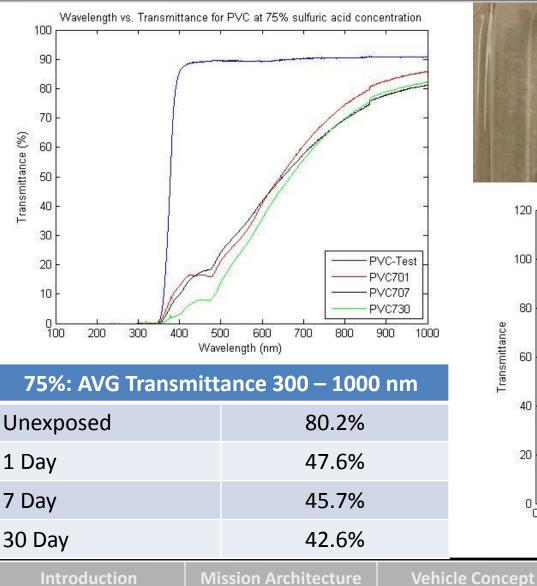
Sulfuric Acid Test

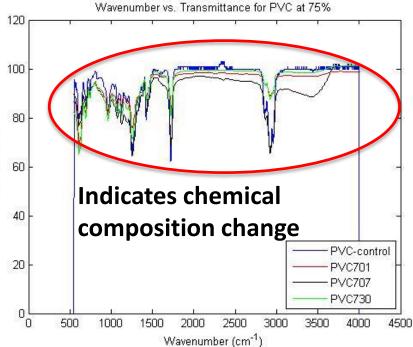
- Goal: Identify material(s) suitable for protecting solar panels from concentrated sulfuric acid.
- Method: Soak candidate materials (FEP Teflon, PVC, PP) in acid for 1, 7, 30 days, compare physical and spectral properties against controls.
- Analysis: Collect data on light transmittance vs wavelength in ultra-violet, visible, and infrared spectrum.



41


Polypropylene Results


FEP Teflon Results



Polyvinyl Chloride (PVC) Results

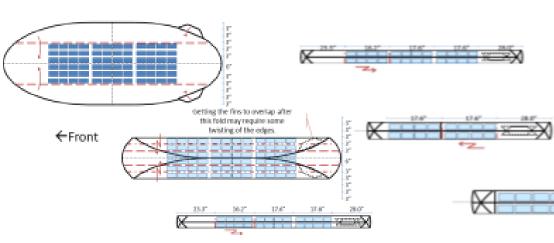
Proof of Concept

Conclusion

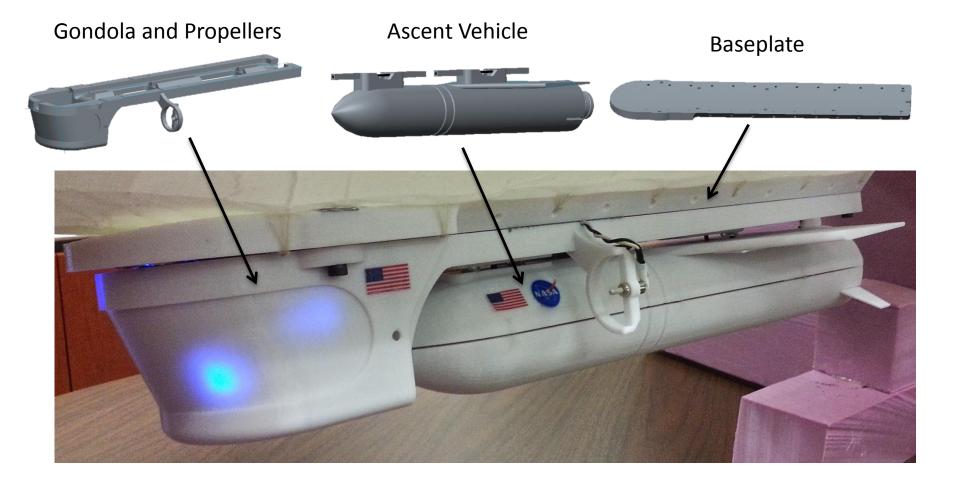
Sulfuric Acid Test Conclusions

- Polypropylene did not degrade and had 90% transmittance
 - May degrade when exposed to temperatures above 50°C
- Teflon did not degrade and had 90-93% transmittance
 - Highest melting point of tested materials
- Polyvinyl chloride underwent chemical change and lost transmittance
 - Fell from 80% to 48% after one day, to 43% after 30 days

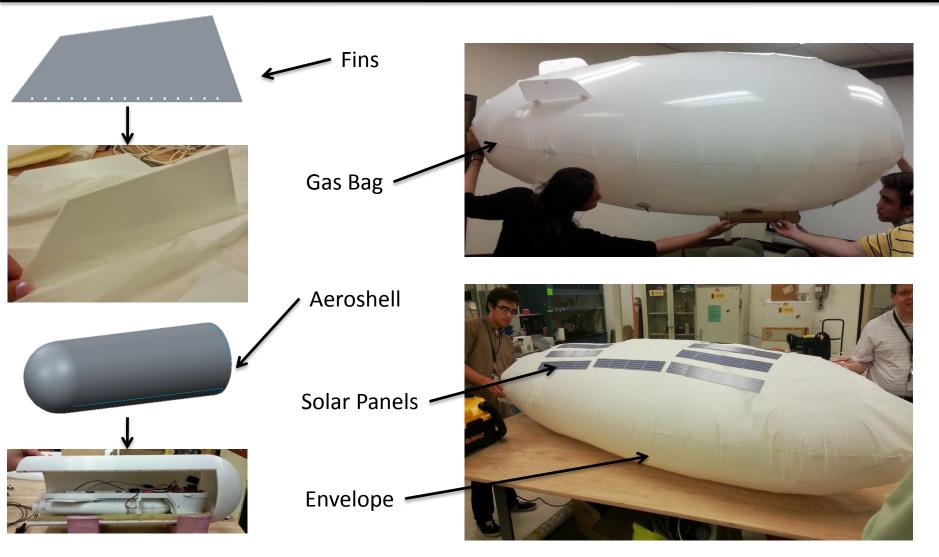
Teflon and polypropylene recommended for future testing at relevant temperatures (75-80°C)



Introduction


Airship Inflation Demonstration

- Goal: develop and demonstrate concepts for packaging and Entry, Descent, and Inflation (EDI)
- Method: design and construct scale model of HAVOC vehicle, demonstrate that it packages and inflates and document algorithm and concept for future development.



Introduction	Mission Architecture	Vehicle Concept	Proof of Concept	Conclusion

Airship Elements—Structure

Airship Inflation Demonstrations

Vehicle Concept

Proof of Concept

Conclusion

Mission Architecture

- What is the communications architecture for the robotic and human missions?
- What do the Phase 2, Phase 4, and Phase 5 missions look like?
- Detailed design of propulsive stages (TVI/TEI stages, ascent vehicle, etc.)
- Low thrust pre-deployment trade
- Detailed design of science operations for robotic and human missions

Vehicle Concept

- What guidance algorithms yield optimal aerocapture, entry, and ascent trajectories?
- What can be done with the airship after the human mission is complete?
- Refine decelerator, TPS, and deployment/inflation design
- Entry shape, detailed vehicle dynamics, operational simulation, other lifting gases

Proof of Concept

- How do Teflon and polypropylene withstand sulfuric acid at Venus temperatures?
- How does a model of the airship perform in Venus atmospheric conditions?
- Physical tests of inflation on parachute and with tanks

Ascent Habitat Summary

	Design Constraints/Parameters		Category	Mass, kg
			Structure	52
	Pressurized Vol.	4.6 m ³	Protection	2
	Habitable Vol.	2.6 m ³	Propulsion	
	Atmospheric Pressure	101.4 kPa	Power	53
	Crew Capacity	2	Control (ACS/RCS)	
2	Crewed Mission Duration	1 d	Avionics	32
	the second second factors and the second		ECLSS	12
	EOL Power Regulred	1 kW	Air, Thermal, Fire Subsystems	22
	Total battery energy storage	49 kW-	h Water Subsystem	2
	Number of Batteries	3	EVA systems	
8	Depth of Discharge	80 %	Thermal Control System	11
	Power load during battery operati		Crew Equipment	
s			Utilization	
	ECLSS Closure - Water	Open	Growth	4
N- 8	ECLSS Closure - Air	Open	Radiation Protection (waterwall)(Not included in growth)	
2 -			DRY MASS SUBTOTAL	2,1
2	Habitat Structure	al Rigid Cylinder	Logistics	
3	Habitat Length	2.77 m	Food (Including Trays & Wraps)	
	Habitat Diameter	1.50 m	Waste Collection (Fecal Canisters, Urine Prefilters,	
			Personal Hygiene Kit	
	Mass Growth Allocation	20%	Hygiene Consumables	
	Project Manager's Reserve	10%	Clothing	
e la			Recreation & Personal Stowage	
.			Wipes /Paper/Tissue (Housekeeping)	
CAscent Habitat provides crew habitation for the	Category	Vol., m ³	Trash Bags	
from the atmosphere of Venus to the orbiting	Systems Volume	1.75	Operational Supplies	
	Crew Equipment	0.02	Survival Kit	
t Habitat.	Utilization	0.00	Sleep Accomodations	
	Alriock	0.00	Heal th Care Consumables	
	Dry Goods Storage	0.02	Emergency Breathing Apparatus	
	Water Storage	0.01	Spares	
	Volds	0.27	Maintenance Items	
	Total Non-Habitable Volume	2.07	ECLSS Consumables (Nominal + Contingency)	
	Habitable Volume	2.56	Reserve and Residual Prop.	
	Total Pressurized Volume	4,63	IN ERT MASS SUBTOTAL	2,17
	Total Pressuriced Fordine	4.03	Propellant	2,21
			TOTAL WET MASS	2,17

Conclusion

Atmospheric Habitat Summary

Design Constraints/Parameters

Pressurized Vol.	20.7 m ³	
Habitable Vol.	10.8 m	
Atmospheric Pressure	101.4 kP	3
Crew Capacity	2	
Crewed Mission Duration	28 d	
EOL Power Required	3 kw	1
Total battery energy storage	6 kv	/-h
Number of Batteries	3	
Depth of Discharge	80 %	
Power load during battery oper-	ati 2.4 kV	ſ
ECLSS Closure - Water	Open	
ECLSS Closure - Air	Open	
Habitat Structure	al Rigid Cylinder	
Ha bita t Length	3.41 m	
Habitat Diameter	2.91 m	
Mass Growth Allocation	20%	
Project Manager's Reserve	10%	

HAVOCA tmospheric Habitat provides habitation for 2	
crew for up to 28 days. No EVA support iscurrently	
provided. Propellant and power generation are	
provided by attached elements.	

Category	Vol., m ³
Systems Volume	3.4
Crew Equipment	1.4
Utilization	0.0
Alriock	0.0
Dry Goods Storage	3.6
Water Storage	0.2
Volds	1.3
Total Non-Habitable Volume	9.9
Habitable Volume	10.8
Total Pressurized Volume	20.7

Category	Mass, kg
Structure	1,10
Protection	5
Propulsion	
Power	41
Control (ACS/RCS)	41
Avlonks	44
ECLSS	60
Air Subsystem	250
Water Subsystem	84
Food Processing	30
Human Accommodations	
Other	23
EVA systems	
Thermal Control System	21
Crew Equipment	28
Utilization	20
Growth	89
Radiation Protection (waterwall)(Not included in growth)	03
DRY MASS SUBTOTAL	4,01
Logistics	85
Food (Including Trays & Wraps)	10
Waste Collection (Fecal Canisters, Urine Prefilters,	
Personal Hygiene Kit	
Hygiene Consumables	
Clothing	
Recreation & Personal Stowage	
Wipes /Paper/Tissue (Housekeeping)	1
Trash Bags	-
Operational Supplies	4
Survival Kit	
Sleep Accomodations	1
Health Care Consumables	4
Emergency Breathing Apparatus	
Spares and Maintenance items	51
CTBs	10
ECLSS Consumables (Nominal + Contingency)	21
Reserve and Residual Prop.	
INERT MASS SUBTOTAL	5,08
Propellant	5,00
TOTAL WET MASS	5,08

Transit Habitat Summary

Design Constraints/Parameters

Pressurized Vol.	100.3	m³
Habitable Vol.	44.0	m
Atmospheric Pressure	101.4	kPa
Crew Capacity	2	
Crewed Mission Duration	410	d
EOL Power Required	12	kW
Total battery energy storage	22	kw-h
Number of Batteries	3	
Depth of Discharge	80	%
Power load during battery ope	rati 9.1	kW
ECLSS Closure - Water	Partially Closed	
ECLSS Closure - Air	Partially Closed	
Habitat Structure	al Rigid Cylinder	
Habitat Height	4.33	m
Habitat Diameter	5.86	m
Mass Growth Allocation	20%	
Project Manager's Reserve	10%	

Description

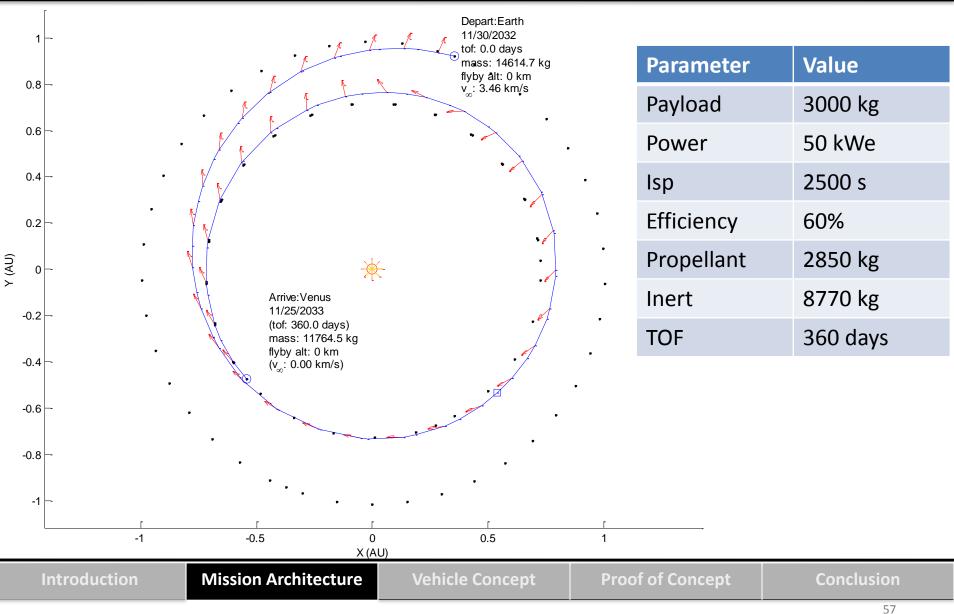
HAVOC Transit Habitat providescrew habitation with for long-duration transit to and from Venus. It includes an internal Shuttle-classairlock for contingency EVAs and generates its own power.

Category	Vol., m ³
Systems Volume	7.9
Crew Equipment	9,4
Utilization	0.0
Alrlock	6.0
Dry Goods Storage	26.2
Water Storage	0.3
Volds	6.5
Total Non-Habitable Volume	56.3
Habitable Volume	44.0
Total Pressurized Volume	100.3

Category	Mass, k
Structure	2,76
Protection	16
Propulsion	
Power	86
Control (ACS/RCS)	
Avionics	45
ECLSS	2,34
Air Subsystem	83
Water Subsystem	1,03.
Food Processing	3
Human Accommodations	8
Other	35.
EVA systems	1,47
Thermal Control System	66
Crew Equipment	1,68
Utilization	
Growth	3,00
Radiation Protection (waterwall)(Not included in growth	
DRY MASS SUBTOTAL	13,41
Logistics	6,29
Food (Including Trays & Wraps)	1,44
Waste Collection (Fecal Canisters, Urine Prefilters,	65
Personal Hygiene Kit	
Hygiene Consumables	7
Clothing	3
Recreation & Personal Stowage	5
Wipes /Paper/Tissue (Housekeeping)	17
Trash Bags	4
Operational Supplies	4
Survival Kit	
Sleep Accomodations	1
Heal th Care Consumables	8
Emergency Breathing Apparatus	
Spares	2,68
Maintenance Items	24
CTBs	74
ECLSS Consumables (Nominal + Contingency)	44
Reserve and Residual Prop.	
IN ERT MASS SUBTOTAL	20,15
Propellant	
TOTAL WET MASS	20,15

BASELINE	ASSUMPTIONS
Structure and Mechanisms	Protection
Metallic, cylindrical habitat: 1.28 m ³ habitable volume per person	20 layers multi-layer insulation
Min.2.5 m barrel length for reasonable ceiling height	Power
~22 m ³ /person habitable volume	120 V DC power management (92% efficient)
Secondary structure 2.46 km/m ² of habitat surface area	3 Li-ion batteries (200 W-hr/kg) where any 2 provide 1 kW for 24 hours
Launch integration 2% of habitat gross mass	Environmental Control and Life Support
1 - 0.5 m diameter window	Open loop consumables and air distribution hardware only
1 docking mechanism, 0 docking tunnels	Modeled with Envision ECLSS model
Atmospheric pressure = 101.3 kPa (14.7 psi)	Crew Equipment & Accommodations
Avionics	Food, lighting, and hygiene items only.
Provide CC&DH, GN&C, communication	Extra-Vehicular Activity (EVA)
Thermal Control	No EVA capability
External fluid loop using Ammonia	
Internal fluid loop using 60% prop glycol/water	
Xx kW heat rejection using ISS-type radiators	
Maintenance and Spares	
No spares manifested	
Reserves	
Margin Growth Allowance: 20% of basic mass	
Project Manager's Reserve: 10% of basic mass	

BASELINE A	SSUMPTIONS
Structure and Mechanisms	Protection
Metallic, 3m cylindrical habitat: 5.4 m ³ habitable volume per person	20 layers multi-layer insulation
Min.2.5 m barrel length for reasonable ceiling height	5.8 cm water-wall on crew quarters for SPE protection
Secondary structure 2.46 km/m ² of habitat surf area	<u>Power</u>
Launch integration 2% of habitat gross mass	~XX kWe end of life power provided by external power system
Four 0.5 m diameter windows	120 V DC power management (92% efficient)
1 exterior hatch	3 Li-ion batteries (200 W-hr/kg) ~XX kW-hr storage
1 docking mechanisms, 1 docking tunnels	Environmental Control and Life Support
Atmospheric pressure = 101.3 kPa (14.7 psi)	Open Loop ECLSS, LIOH CO2 Removal, Water Storage, O2 and H2O Storage
Avionics	10% mass for advanced diagnostics and maintainability
Provide CC&DH, GN&C, communications	30 days open loop contingency consumables
Thermal Control	Crew Equipment & Accommodations
External fluid loop using Ammonia	Standard suite for 0-31 day missions
Internal fluid loop using 60% prop glycol/water	
Xx kW heat rejection using ISS-type radiators	Crew items, sink (spigot), food warmer, toilet
Maintenance and Spares	vacuums, seats, medical kit, wipes, photography equiment
Sized using Monte Carlo simulation engine (EMAT)	<u>Logistics</u>
Reserves	Sized based upon ISS usage rates
Margin Growth Allowance: 20% of basic mass	Extra-Vehicular Activity (EVA)
Project Manager's Reserve: 10% of basic mass	No EVA capability provided

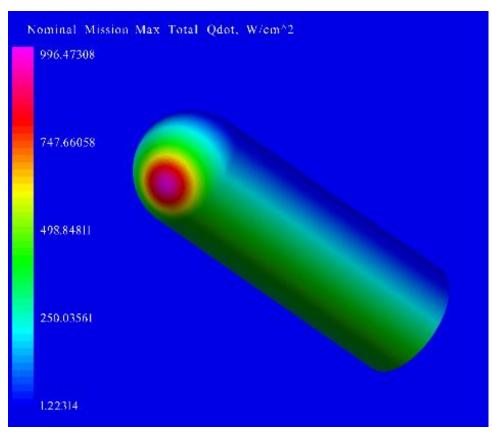


BASE	ELINE ASSUMPTIONS
Structure and Mechanisms	Protection
Metallic, cylindrical habitat: max 7.2 m diameter	20 layers multi-layer insulation
0.3 m for port extrusions, attachments, structure	Power
Min.2.5 m barrel length for reasonable ceiling height	~XX kWe end of life power 3-Junction GaAs arrays sized for Earth
~22 m ³ /person habitable volume	120 V DC power management (92% efficient)
Secondary structure 2.46 km/m ² of habitat surf area	3 Li-ion batteries (200 W-hr/kg) ~XX kW-hr storage
Launch integration 2% of habitat gross mass	Environmental Control and Life Support
Four 0.5 m diameter windows	Scaled ISS level ECLSS (100% air, ~85% water) hardware for 380 days
1 exterior hatch	10% mass for advanced diagnostics and maintainability
2 docking mechanisms, 2 docking tunnels	30 days open loop contingency consumables
Atmospheric pressure = 70.3 kPa (10.2 psi)	Crew Equipment & Accommodations
Avionics	Standard suite for 180-360 day deep-space
Provide CC&DH, GN&C, communications	Assume freezer for missions longer than 1-year
Thermal Control	Crew items, sink (spigot), freezer, microwave,
External fluid loop using Ammonia	washer, dryer, 2 vacuums, laptop, trash compactor,
Internal fluid loop using 60% prop glycol/water	printer, hand tools, test equipment, ergometer,
TBD kW heat rejection using ISS-type radiators	photography, exercise, treadmill, table
Maintenance and Spares	<u>Logistics</u>
Sized using Monte Carlo simulation engine (EMAT)	Sized based upon ISS usage rates + 30 days contingency
Reserves	Extra-Vehicular Activity (EVA)
Margin Growth Allowance: 20% of basic mass	600 kg 6 m ³ internal airlock for contingency
Project Manager's Reserve: 10% of basic mass	2 person EVAs using shuttle-class internal airlock
	1 spare per suit for every suit component 1 EVA per 30 days

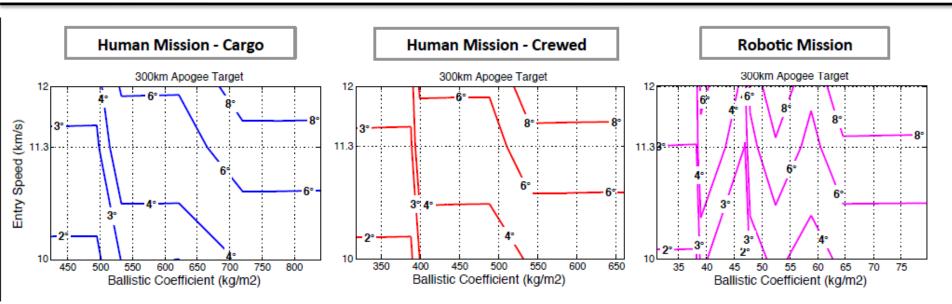
Conclusion

Low Thrust One-Way to Venus – Notional

Aerothermodynamics

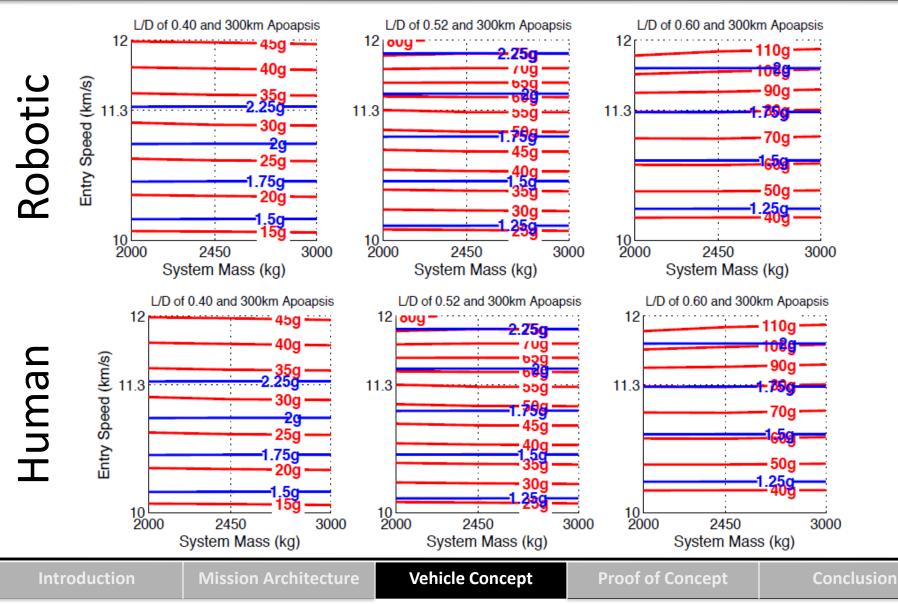


Entry vehicle modeled as ellipsled design from EDLSA study

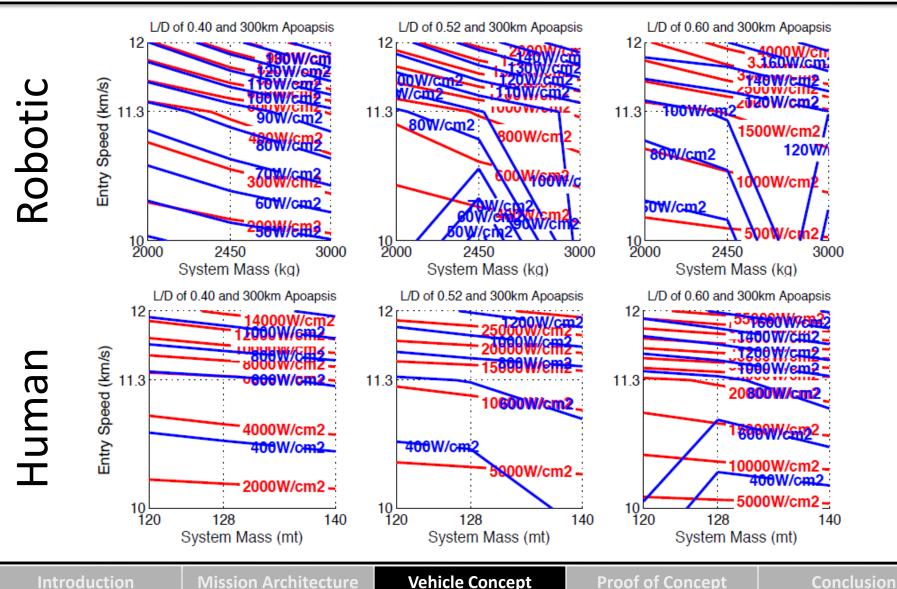

- Right circular cylinder
- Hemispherical nose cap & flat base
- Total length-to-diameter ratio of 3
- Databases for 4.7 m (unmanned robotic precursor) and 10 m (manned) diameter ellipsleds generated with CBAERO
- Tables include static aero coefficients, convective & radiative heat rates

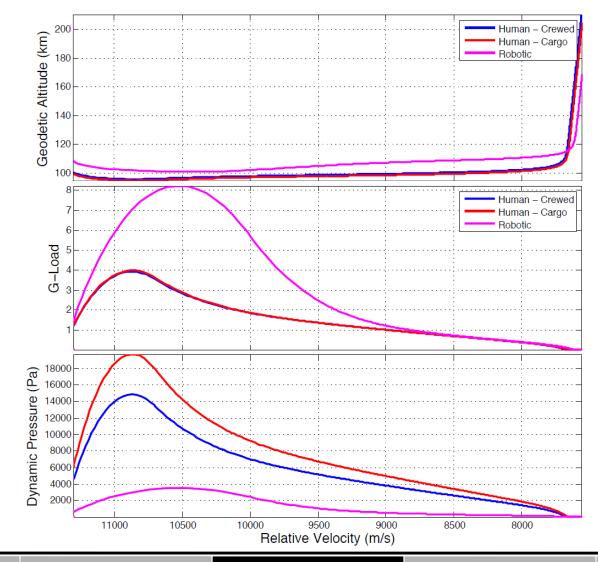
For conservative aeroheating, <u>fully turbulent</u> <u>flow</u> and <u>fully catalytic wall</u>

- Mach 24 point check case matched LAURA stagnation point heating
- Databases span dimensions of Mach, dynamic pressure, and angle of attack
 - M_∞: 1.5 to 50
 - q_{∞} : 1.E-8 to 6.E-2 bar
 - α_T : 0 to 90 degrees

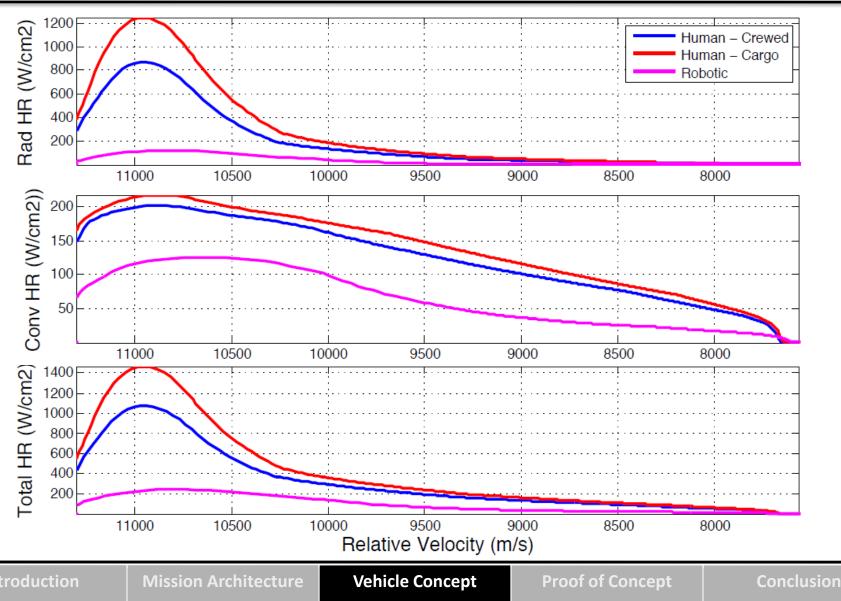

Aerocapture Entry Flight Path Corridor

Past studies at Venus have shown that roughly 1 degree of entry flight path angle corridor width is necessary to fly out any unexpected dispersions during aerocapture. All of these cases posses well above 1 degree of corridor width and are therefore deemed viablecases.


Aerocapture Acceleration

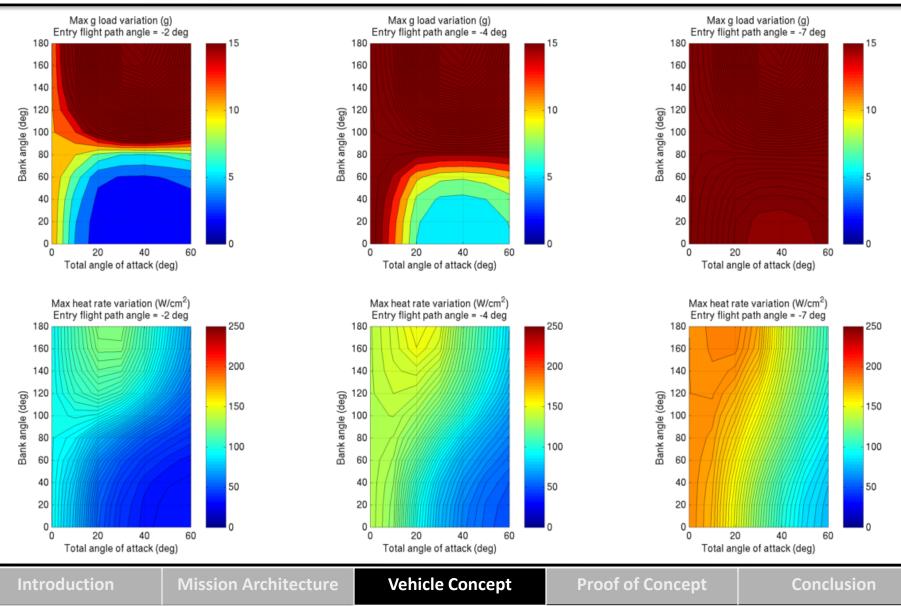

Aerocapture Heat Rate

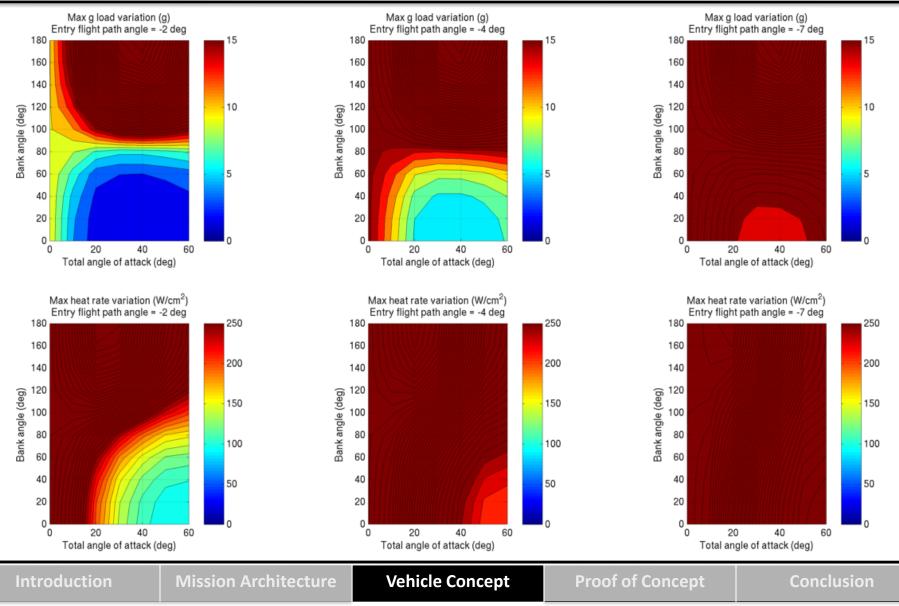
Aerocapture Trajectory

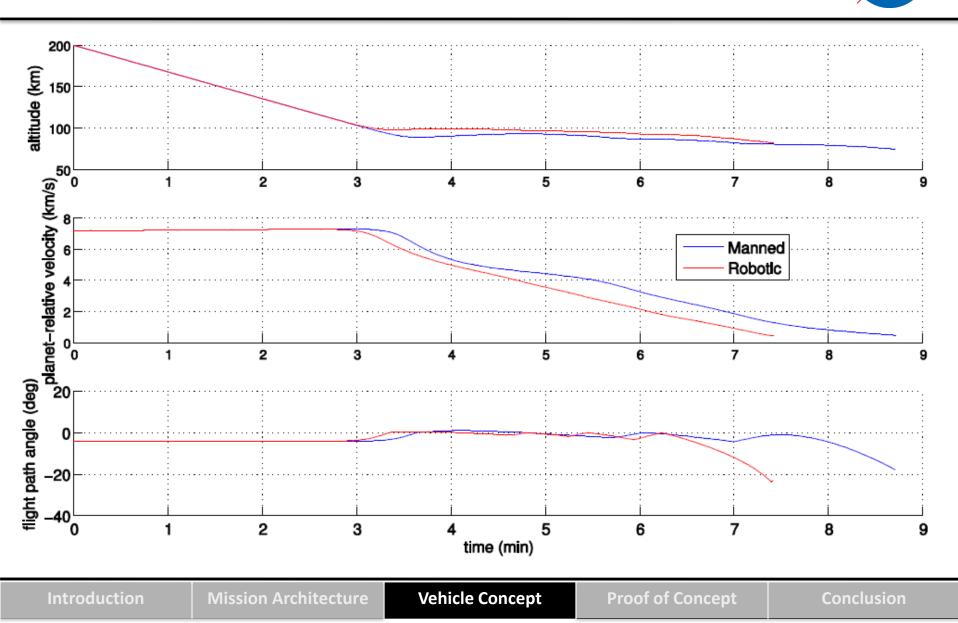


ntr	od			
IIIII	uu	uu	 	

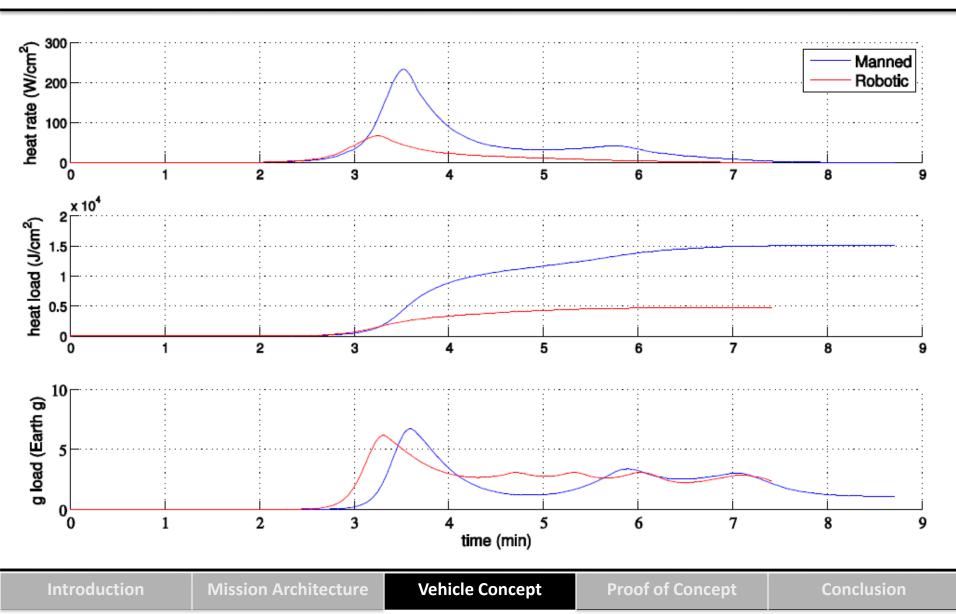
Conclusion

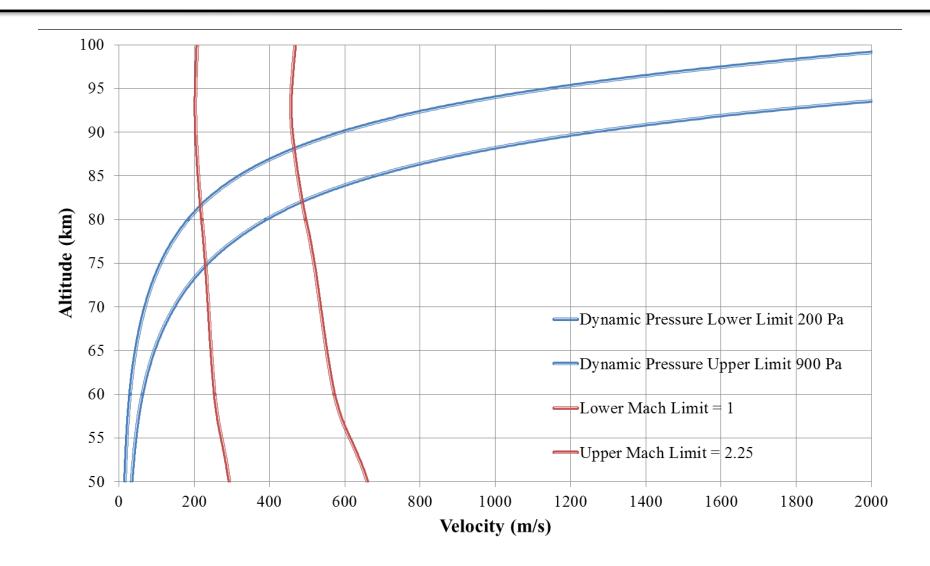

Aerocapture Heating Loads


Robotic Mission Entry Trajectory Design Space



Human Mission Entry Trajectory Design Space



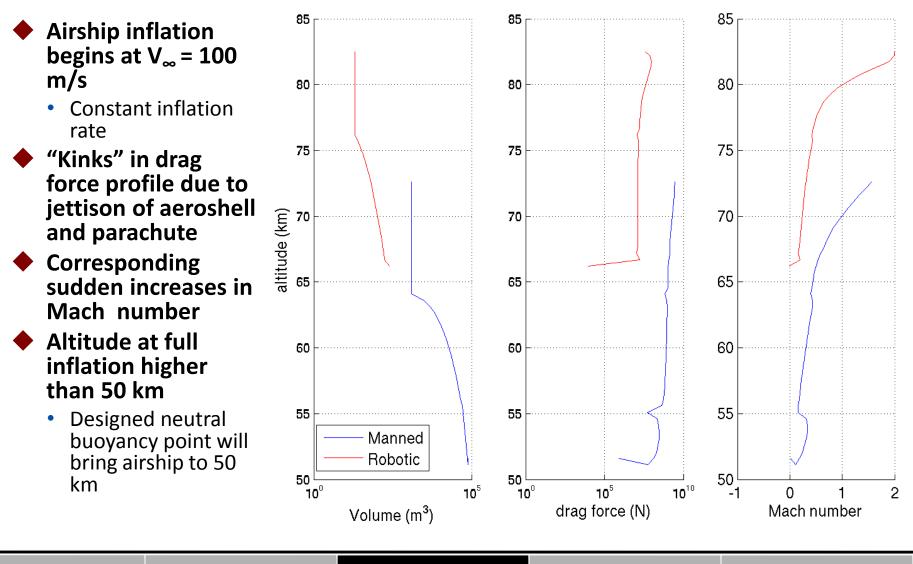

Overview of Selected Trajectories

Aero Loads for Selected Entry Trajectories

Historical Disc Gap Band Parachute Deploy Conditions

Introduction	Mission Architecture	Vehicle Concept	Proof of Concept	Conclusion

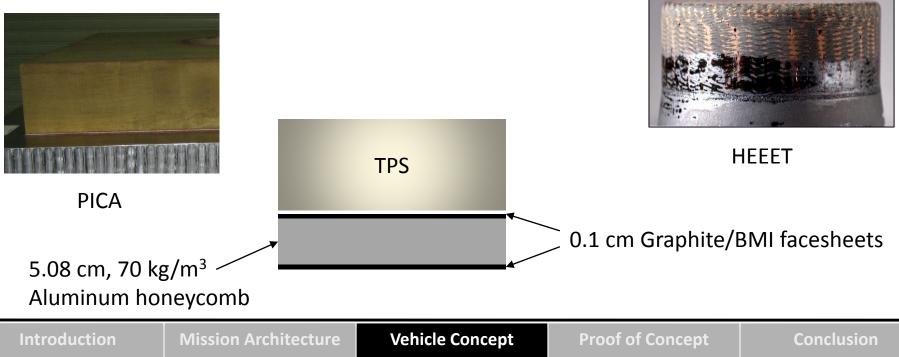
Manned mission unable to reach low enough dynamic pressure to deploy conventional supersonic parachute


- Continue analysis by assuming there is technology available (e.g., ballute, IAD, etc.) that permits a decelerator deployment at high dynamic pressures (3-4 kPa)
- Terminal Descent Model (TDM) developed to analyze how aerodynamic, buoyancy, and inertial forces combine to adjust terminal velocity during unpowered descent
 - TDM determines aerodynamic and buoyancy forces acting on vehicle configuration as function of time at altitude increments of 500 m
 - Distinct modeling and calculations applied to each phase of descent due to characteristically different vehicle configurations, weights, and buoyancy forces

Assumptions: All terminal descent operations occur under parachute

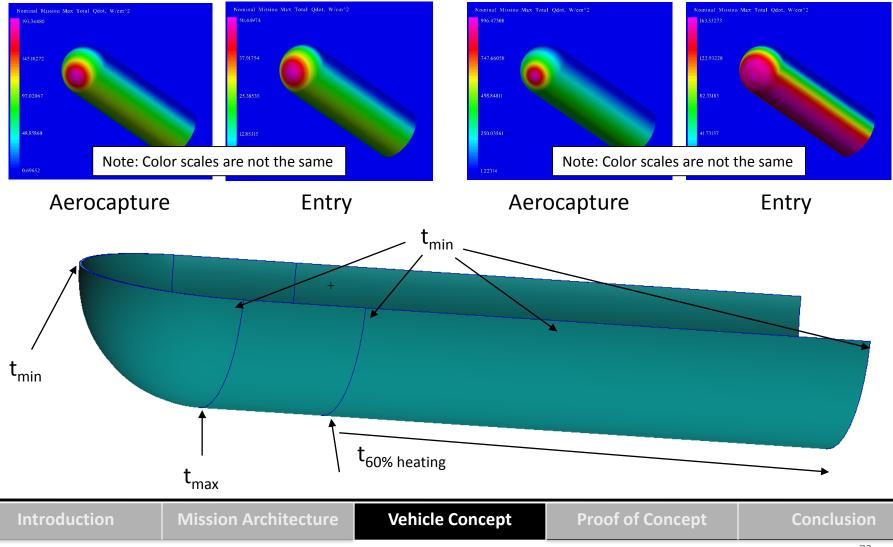
- Atmosphere molecular weight of 43.58 g/mole (97% CO₂, 3% N₂) & helium lifting gas weight of 4.0 g/mole
- Multiple tanks are used in sequence and jettisoned when depleted
- Airship inflation begins & aeroshell jettisoned when velocity is 100 m/s
- Parachute jettisoned when buoyancy to parachute drag ratio exceeds 90%

Airship Inflation Results



Thermal Protection System (TPS) Candidates

- HEEET (Heatshield for Extreme Entry Environment Technology): dual layer material, high density outer "recession" layer woven in the through thickness direction to a lower density "insulation" layer, 3D woven carbon fibers infused with phenolic resin
- PICA (Phenolic Impregnated Carbon Ablator): monolithic resin infused fiberform insulation



TPS Tailoring Overview

Robotic Heat Flux Distribution

Human Heat Flux Distribution

TPS Results Summary

TPS Tailoring

- No TPS required on back side of the sphere or cylinder sections
- Maximum thickness at the intersection of the sphere and cylinder at the centerline
- Longitudinally: Thickness falls from t_{max} to 60% of t_{max} down the cylinder along the centerline
- Circumferentially: Thickness drops from the centerline thickness to minimum thickness (t_{min}) in the circumferential direction
- Minimum thickness that can be manufactured is assumed to be 5 mm

Robotic Mission

PICA selected because it is the lower mass option

Human Mission

- HEEET selected because PICA is approaching its heat flux limit
- Could look at multi-material heat shield using HEEET and PICA to save mass
- Human mission has less flexibility in tailoring

The dual pulse capability must be verified for either material

Mission	Assumed Mass (kg)	Calculated Mass* (kg)
Robotic – PICA	1,050	2,360
Manned – HEEET	33,300	34,500
*25% mass margin		

Element	Mass (kg)
Payload and Instruments	750
Airship	652
EDI and Aerocapture	1,049
Cruise Stage	122
Trans-Venus Injection Stage	4,604
IMLEO	7,157

Introduction	Mission Architecture	Vehicle Concept	Proof of Concept	Conclusion
--------------	----------------------	-----------------	------------------	------------

Element	Mass (kg)
Atmospheric Habitat	5,085
Ascent Habitat	2,172
Ascent Vehicle	62,743
Airship	25,772
EDI and Aerocapture	33,278
Trans-Venus Injection Stage 2	109,351
Trans-Venus Injection Stage 1	109,351
IMLEO	348,455

Element	Mass (kg)
Transit Habitat	20,151
Trans-Earth Injection Stage	52,367
Aerocapture	26,496
Trans-Venus Injection Stage 2	63,348
Trans-Venus Injection Stage 1	103,877
IMLEO	266,238

|--|