2,269 research outputs found

    Ultrasonic Microdissection of Rat Cerebellum for Scanning Electron Microscopy

    Get PDF
    The cerebelli of rats were initially fixed with aldehydes (modified Karnovsky\u27s fixative; 503 mOsM/L) by cardiac perfusion. Blocks of tissue were razor-cut, usually longitudinal to folia, and immersed in the same fluid for 2-4 hours. Three separate methods of treatment followed: (1) immersion in 1% aqueous boric acid, or (2) in 2% phosphate buffered OsO4 followed by boric acid or (3) in an 8/2 mixture of boric acid and OsO4. After 18-48 hours immersion the blocks were dehydrated in ascending grades of acetone. They were then exposed to ultrasound in 100% acetone at frequencies of 80 kHz or 40 kHz for 10 to 20 minutes. Microdissection of cut surfaces (erosion) occurs after all three treatments. It is least extensive after boric acid, moderate after OsO4 and greatest after the combined mixture. All cerebellar cell types are recognizable as are numerous fibers according to morphology and position. Variable erosion accommodates analysis of different levels of neural organization. In general, structural situations not involving great depth of field are best revealed by H3BO3 or OsO4. Blood vascular relationships to other structures are best demonstrated in deeply eroded specimens

    Collapsars - Gamma-Ray Bursts and Explosions in "Failed Supernovae"

    Get PDF
    Using a two-dimensional hydrodynamics code (PROMETHEUS), we study the continued evolution of rotating massive helium stars whose iron core collapse does not produce a successful outgoing shock, but instead forms a black hole. We study the formation of a disk, the associated flow patterns, and the accretion rate for disk viscosity parameter, alpha ~ 0.001 and 0.1. For the standard 14 solar mass model the average accretion rate for 15 s is 0.07 solar masses per second and the total energy deposited along the rotational axes by neutrino annihilation is (1 - 14) x 10**51 erg, depending upon the evolution of the Kerr parameter and uncertain neutrino efficiencies. Simulated deposition of this energy in the polar regions results in strong relativistic outflow - jets beamed to about 1.5% of the sky. The jets remain highly focused, and are capable of penetrating the star in 5 - 10 s. After the jet breaks through the surface of the star, highly relativistic flow can commence. Because of the sensitivity of the mass ejection and jets to accretion rate, angular momentum, and disk viscosity, and the variation of observational consequences with viewing angle, a large range of outcomes is possible ranging from bright GRBs like GRB 971214 to faint GRB-supernovae like SN 1998bw. X-ray precursors are also possible as the jet first breaks out of the star. While only a small fraction of supernovae make GRBs, we predict that all GRBs longer than a few seconds will make supernovae similar to SN 1998bw. However, hard, energetic GRBs shorter than a few seconds will be difficult to make in this model.Comment: Latex, 66 pages including 27 figures (9 color), Submitted to The Astrophysical Journal, latex uses aaspp4.sty. Figures also available at http://www.ucolick.org/~andre

    Screened thermonuclear reactions and predictive stellar evolution of detached double-lined eclipsing binaries

    Full text link
    The low energy fusion cross sections of charged-particle nuclear reactions (and the respective reaction rates) in stellar plasmas are enhanced due to plasma screening effects. We study the impact of those effects on predictive stellar evolution simulations for detached double-lined eclipsing binaries. We follow the evolution of binary systems (pre-main sequence or main sequence stars) with precisely determined radii and masses from 1.1Mo to 23Mo (from their birth until their present state). The results indicate that all the discrepancies between the screened and unscreened models (in terms of luminosity, stellar radius, and effective temperature) are within the observational uncertainties. Moreover, no nucleosynthetic or compositional variation was found due to screening corrections. Therefore all thermonuclear screening effects on the charged-particle nuclear reactions that occur in the binary stars considered in this work (from their birth until their present state) can be totally disregarded. In other words, all relevant charged-particle nuclear reactions can be safely assumed to take place in a vacuum, thus simplifying and accelerating the simulation processes.Comment: 5 RevTex pages,no figures. Accepted for publication in Phys.Rev.

    Massive Stars in the Range 1325M\rm 13-25 M_\odot: Evolution and Nucleosynthesis. II. the Solar Metallicity Models

    Full text link
    We present the evolutionary properties of a set of massive stellar models (namely 13, 15, 20 and 25 M\rm M_\odot) from the main sequence phase up to the onset of the iron core collapse. All these models have initial solar chemical composition, i.e. Y=0.285 and Z=0.02. A 179 isotope network, extending from neutron up to 68Zn\rm ^{68}Zn and fully coupled to the evolutionary code has been adopted from the Carbon burning onward. Our results are compared, whenever possible, to similar computations available in literature.Comment: 42 pages, 18 figures, 26 tables, accepted for publicatin in ApJ

    2D Multi-Angle, Multi-Group Neutrino Radiation-Hydrodynamic Simulations of Postbounce Supernova Cores

    Get PDF
    We perform axisymmetric (2D) multi-angle, multi-group neutrino radiation-hydrodynamic calculations of the postbounce phase of core-collapse supernovae using a genuinely 2D discrete-ordinate (S_n) method. We follow the long-term postbounce evolution of the cores of one nonrotating and one rapidly-rotating 20-solar-mass stellar model for ~400 milliseconds from 160 ms to ~550 ms after bounce. We present a multi-D analysis of the multi-angle neutrino radiation fields and compare in detail with counterpart simulations carried out in the 2D multi-group flux-limited diffusion (MGFLD) approximation to neutrino transport. We find that 2D multi-angle transport is superior in capturing the global and local radiation-field variations associated with rotation-induced and SASI-induced aspherical hydrodynamic configurations. In the rotating model, multi-angle transport predicts much larger asymptotic neutrino flux asymmetries with pole to equator ratios of up to ~2.5, while MGFLD tends to sphericize the radiation fields already in the optically semi-transparent postshock regions. Along the poles, the multi-angle calculation predicts a dramatic enhancement of the neutrino heating by up to a factor of 3, which alters the postbounce evolution and results in greater polar shock radii and an earlier onset of the initially rotationally weakened SASI. In the nonrotating model, differences between multi-angle and MGFLD calculations remain small at early times when the postshock region does not depart significantly from spherical symmetry. At later times, however, the growing SASI leads to large-scale asymmetries and the multi-angle calculation predicts up to 30% higher average integral neutrino energy deposition rates than MGFLD.Comment: 20 pages, 21 figures. Minor revisions. Accepted for publication in ApJ. A version with high-resolution figures may be obtained from http://www.stellarcollapse.org/papers/Ott_et_al2008_multi_angle.pd

    A dynamical model of surrogate reactions

    Full text link
    A new dynamical model is developed to describe the whole process of surrogate reactions; transfer of several nucleons at an initial stage, thermal equilibration of residues leading to washing out of shell effects and decay of populated compound nuclei are treated in a unified framework. Multi-dimensional Langevin equations are employed to describe time-evolution of collective coordinates with a time-dependent potential energy surface corresponding to different stages of surrogate reactions. The new model is capable of calculating spin distributions of the compound nuclei, one of the most important quantity in the surrogate technique. Furthermore, various observables of surrogate reactions can be calculated, e.g., energy and angular distribution of ejectile, and mass distributions of fission fragments. These features are important to assess validity of the proposed model itself, to understand mechanisms of the surrogate reactions and to determine unknown parameters of the model. It is found that spin distributions of compound nuclei produced in 18^{18}O+238^{238}U 16\rightarrow ^{16}O+240^{240*}U and 18^{18}O+236^{236}U 16\rightarrow ^{16}O+238^{238*}U reactions are equivalent and much less than 10\hbar, therefore satisfy conditions proposed by Chiba and Iwamoto (PRC 81, 044604(2010)) if they are used as a pair in the surrogate ratio method.Comment: 17 pages, 5 figure

    Observational Tests and Predictive Stellar Evolution II: Non-standard Models

    Full text link
    We examine contributions of second order physical processes to results of stellar evolution calculations amenable to direct observational testing. In the first paper in the series (Young et al. 2001) we established baseline results using only physics which are common to modern stellar evolution codes. In the current paper we establish how much of the discrepancy between observations and baseline models is due to particular elements of new physics. We then consider the impact of the observational uncertainties on the maximum predictive accuracy achievable by a stellar evolution code. The sun is an optimal case because of the precise and abundant observations and the relative simplicity of the underlying stellar physics. The Standard Model is capable of matching the structure of the sun as determined by helioseismology and gross surface observables to better than a percent. Given an initial mass and surface composition within the observational errors, and no additional constraints for which the models can be optimized, it is not possible to predict the sun's current state to better than ~7%. Convectively induced mixing in radiative regions, seen in multidimensional hydrodynamic simulations, dramatically improves the predictions for radii, luminosity, and apsidal motions of eclipsing binaries while simultaneously maintaining consistency with observed light element depletion and turnoff ages in young clusters (Young et al. 2003). Systematic errors in core size for models of massive binaries disappear with more complete mixing physics, and acceptable fits are achieved for all of the binaries without calibration of free parameters. The lack of accurate abundance determinations for binaries is now the main obstacle to improving stellar models using this type of test.Comment: 33 pages, 8 figures, accepted for publication in the Astrophysical Journa

    Collisional Dark Matter and the Origin of Massive Black Holes

    Full text link
    If the cosmological dark matter is primarily in the form of an elementary particle which has cross section and mass for self-interaction having a ratio similar to that of ordinary nuclear matter, then seed black holes (formed in stellar collapse) will grow in a Hubble time, due to accretion of the dark matter, to a mass range 10^6 - 10^9 solar masses. Furthermore, the dependence of the final black hole mass on the galaxy velocity dispersion will be approximately as observed and the growth rate will show a time dependence consistent with observations. Other astrophysical consequences of collisional dark matter and tests of the idea are noted.Comment: 7 pages, no figures, LaTeX2e, Accepted for publication in Phys. Rev. Lett. Changed conten

    Parental Involvement Among Collegiate Student-Athletes: An Analysis Across NCAA Divisions

    Get PDF
    Despite emerging evidence of a link between parental involvement and student-athletes’ (SA) experiences, and the desire for educational programming for parents of these SAs, previous research has been limited to the Division I level. This has prevented the ability to inform, develop, and deliver parent programming across the NCAA’s diverse membership. The present study was designed to descriptively assess SA reports of parental involvement (i.e., support, contact, academic engagement, athletic engagement) across NCAA Division I, II, and III member institutions and examine the potential impact of this involvement on SAs’ experiences (i.e., academic self-efficacy, athletic satisfaction, well-being, individuation). Participants were 455 SAs (53% female; 81% Caucasian; Mage = 19.81, SD = 1.65) from DI (30%), DII (37%), and DIII (33%) institutions, who completed an online survey with items assessing parental involvement and SA experiences. Regarding academic classification, 32% were freshmen, 24% sophomores, 22% juniors, and 22% seniors. Results provide novel evidence for an absence of division-wide differences in average levels of involvement and no variability in links between involvement and SA experiences across divisions. Results complement and extend previous research by offering a clearer understanding of differential associations between involvement and SAs’ experiences regardless of division, notably that involvement bolstered well-being but also strongly detracted from individuation. Findings highlight the importance of developing programs to promote positive and developmentally-appropriate parental involvement across the spectrum of intercollegiate athletics, especially given the absence of evidence-based resources presently offered by the NCAA

    Supernova Ia: a Converging Delayed Detonation Wave

    Get PDF
    A model of a carbon-oxygen (C--O) presupernova core with an initial mass 1.33 M_\odot, an initial carbon mass fraction 0.27, and with an average mass growth-rate 5 x 10^{-7} M_\odot/yr due to accretion in a binary system was evolved from initial central density 10^9 g/cm^3, and temperature 2.05 x 10^8 K through convective core formation and its subsequent expansion to the carbon runaway at the center. The only thermonuclear reaction contained in the equations of evolution and runaway was the carbon burning reaction 12C + 12C with an energy release corresponding to the full transition of carbon and oxygen (with the same rate as carbon) into 56Ni. As a parameter we take \alpha_c - a ratio of a mixing length to the size of the convective zone. In spite of the crude assumptions, we obtained a pattern of the runaway acceptable for the supernova theory with the strong dependence of its duration on \alpha_c. In the variants with large enough values of \alpha_c=4.0 x 10^{-3} and 3.0 x 10^{-3} the fuel combustion occurred from the very beginning as a prompt detonation. In the range of 2.0 x 10^{-3} >= \alpha_c >= 3.0 x 10^{-4} the burning started as a deflagration with excitation of stellar pulsations with growing amplitude. Eventually, the detonation set in, which was activated near the surface layers of the presupernova (with m about 1.33 M_\odot) and penetrated into the star down to the deflagration front. Excitation of model pulsations and formation of a detonation front are described in detail for the variant with \alpha_c=1.0 x 10^{-3}.Comment: 13 pages, 11 figures, to appear in Astronomy Letter
    corecore