51 research outputs found

    New Circumspection of the Genus \u3ci\u3eGamochaeta\u3c/i\u3e (Asteraceae, Gnaphalieae) Inferred From Nuclear and Plastid DNA Sequences

    Get PDF
    Gamochaeta (tribe Gnaphalieae, Asteraceae) is composed of ca. 60 species primarily distributed in tropical and subtropical America. Within the tribe Gnaphalieae, the genus is characterized by capitula arranged in spikes or head-like clusters, few hermaphroditic central florets, truncate style branches with apical sweeping trichomes, pappus bristles connate at the base into a ring falling as a unit, and achenes with globose twin trichomes. Previous molecular phylogenetic studies have suggested the paraphyly of the genus, but have not provided a basis for redefining generic limits due to incomplete taxon sampling. To address this problem, DNA sequences from the plastid (trnL-F) and nuclear (ETS and ITS) genomes were analyzed from a broad taxon sample representing the full range of morphological variation known in the genus. Our results affirm that Gamochaeta is paraphyletic as presently circumscribed. Two clades can be recognized: one clade that includes the majority of the species currently assigned to Gamochaeta and a second clade that includes Gamochaetopsis, Stuckertiella and seven species of Gamochaeta. We present here a new circumscription of Gamochaeta, including two new combinations, Gamochaeta alpina and Gamochaeta peregrina, and the resurrection of Gamochaeta capitata. Our results also show Omalotheca supina, O. norvegica and O. sylvatica, which were placed by some authors in Gamochaeta or in Gnaphalium, form a monophyletic group distantly related to both genera

    New circumscription of the genus <i>Gamochaeta</i> (Asteraceae, Gnaphalieae) inferred from nuclear and plastid DNA sequences

    Get PDF
    Gamochaeta (tribe Gnaphalieae, Asteraceae) is composed of ca. 60 species primarily distributed in tropical and subtropical America. Within the tribe Gnaphalieae, the genus is characterized by capitula arranged in spikes or head-like clusters, few hermaphroditic central florets, truncate style branches with apical sweeping trichomes, pappus bristles connate at the base into a ring falling as a unit, and achenes with globose twin trichomes. Previous molecular phylogenetic studies have suggested the paraphyly of the genus, but have not provided a basis for redefining generic limits due to incomplete taxon sampling. To address this problem, DNA sequences from the plastid (trnL-F) and nuclear (ETS and ITS) genomes were analyzed from a broad taxon sample representing the full range of morphological variation known in the genus. Our results affirm that Gamochaeta is paraphyletic as presently circumscribed. Two clades can be recognized: one clade that includes the majority of the species currently assigned to Gamochaeta and a second clade that includes Gamochaetopsis, Stuckertiella and seven species of Gamochaeta. We present here a new circumscription of Gamochaeta, including two new combinations, Gamochaeta alpina and Gamochaeta peregrina, and the resurrection of Gamochaeta capitata. Our results also show Omalotheca supina, O. norvegica and O. sylvatica, which were placed by some authors in Gamochaeta or in Gnaphalium, form a monophyletic group distantly related to both genera.Facultad de Ciencias Agrarias y Forestale

    Parsimony Analysis and Cladistic Reclassification of the Relhania Generic Group (Asteraceae-Gnaphalieae)

    No full text
    Volume: 78Start Page: 1061End Page: 107

    On the systematic position of Inula rungwensis

    No full text
    The systematic position of Inula rungwensis Beentje is discussed. It is concluded that it is conspecific with Gerbera piloselloides (L.) Cass. of the tribe Mutisieae

    Phylogenetic relationships in the order Ericales s.l. : analyses of molecular data from five genes from the plastid and mitochondrial genomes

    No full text
    Phylogenetic interrelationships in the enlarged order Ericales were investigated by jackknife analysis of a combination of DNA sequences from the plastid genes rbcL, ndhF, atpB, and the mitochondrial genes atp1 and matR. Several well‐supported groups were identified, but neither a combination of all gene sequences nor any one alone fully resolved the relationships between all major clades in Ericales. All investigated families except Theaceae were found to be monophyletic. Four families, Marcgraviaceae, Balsaminaceae, Pellicieraceae, and Tetrameristaceae form a monophyletic group that is the sister of the remaining families. On the next higher level, Fouquieriaceae and Polemoniaceae form a clade that is sister to the majority of families that form a group with eight supported clades between which the interrelationships are unresolved: Theaceae‐Ternstroemioideae with Ficalhoa, Sladenia, and Pentaphylacaceae; Theaceae‐Theoideae; Ebenaceae and Lissocarpaceae; Symplocaceae; Maesaceae, Theophrastaceae, Primulaceae, and Myrsinaceae; Styracaceae and Diapensiaceae; Lecythidaceae and Sapotaceae; Actinidiaceae, Roridulaceae, Sarraceniaceae, Clethraceae, Cyrillaceae, and Ericaceae

    Phylogeny of Anisopappus with species circumscriptions revisited (Asteraceae: Athroismeae)

    No full text
    Anisopappus (Asteraceae: Athroismeae) is a genus with its main distribution in Africa (one species also in Asia), currently considered to include around 21 species. A molecular phylogenetic study of Anisopappus is presented for the first time, based on plastid (ndhF, trnL‐trnF, trnQ‐rps16) and nuclear (ETS, ITS) data. Anisopappus is confirmed to be monophyletic, and species interrelationships are resolved. The results differ from earlier treatments based on morphology, and the phylogenetic analyses reveal a need for changes in species circumscriptions as compared to those of the most recent treatment. Consequently, many taxa currently treated as synonyms are here shown to represent separate species indicating that the genus includes well over 40 species. Distribution patterns now emerge where several clades are found to consist of species restricted to a particular geographical region. The Anisopappus of Madagascar, many of which were earlier placed in synonymy with species found on the African continent, are here shown to be endemic, and the results reveal a need for further studies of that group

    Evolutionary relationships in the Asteraceae tribe Inuleae (incl. Plucheeae) evidenced by DNA sequences of ndhF; with notes on the systematic positions of some aberrant genera

    Get PDF
    AbstractThe phylogenetic relationships between the tribes Inuleae sensu stricto and Plucheeae are investigated by analysis of sequence data from the cpDNA gene ndhF. The delimitation between the two tribes is elucidated, and the systematic positions of a number of genera associated with these groups, i.e. genera with either aberrant morphological characters or a debated systematic position, are clarified. Together, the Inuleae and Plucheeae form a monophyletic group in which the majority of genera of Inuleae s.str. form one clade, and all the taxa from the Plucheeae together with the genera Antiphiona, Calostephane, Geigeria, Ondetia, Pechuel-loeschea, Pegolettia, and Iphionopsis from Inuleae s.str. form another. Members of the Plucheeae are nested with genera of the Inuleae s.str., and support for the Plucheeae clade is weak. Consequently, the latter cannot be maintained and the two groups are treated as one tribe, Inuleae, with the two subtribes Inulinae and Plucheinae. The genera Asteriscus, Chrysophthalmum, Inula, Laggera, Pentanema, Pluchea, and Pulicaria are demonstrated to be non-monophyletic. Cratystylis and Iphionopsis are found to belong to the same clade as the taxa of the former Plucheeae. Caesulia is shown to be a close relative of Duhaldea and Blumea of the Inuleae-Inulinae. The genera Callilepis and Zoutpansbergia belong to the major clade of the family that includes the tribes Heliantheae sensu lato and Inuleae (incl. Plucheeae), but their exact position remains unresolved. The genus Gymnarrhena is not part of the Inuleae, but is either part of the unresolved basal complex of the paraphyletic Cichorioideae, or sister to the entire Asteroideae

    Supplementary Figure S5

    No full text
    Species polygons in colour with starting locations (circles) and specimens sampled for species tree inference

    C_minima_ssp_minima_polygon_file

    No full text
    Google Earth modified polygon file. Place in same directory as analysis and species trees file, and make sure they are referenced correctly in the xml file
    corecore