6,928 research outputs found
Microwave system performance summary
The design of the microwave system for the solar power satellite is described. Design modifications recommended include changes in phase control to the power module level, a reduction in allowable amplitude jitter, the use of metal matrix waveguides, and sequences for startup/shutdown procedures. Investigations into reshaping the beam pattern to improve overall rectenna collection efficiency and improve sidelobe control are surveyed
Where are the missing members of the baryon antidecuplet?
We analyze what consequences has the observation of exotic pentaquark baryons
on the location of the non-exotic baryons belonging to the antidecuplet. We
suggest that there must be a new nucleon state at 1650-1690 MeV and a new Sigma
baryon at 1760-1810 MeV.Comment: 5 pages, 1 figure. Missing reference adde
Results from the Analysis of Crystal Ball Meson Production Measurements at BNL
The Crystal Ball spectrometer, with its nearly complete angular coverage, is
an efficient detector of photon and neutron final states. While installed in
the C6 beamline of the Alternating Gradient Synchrotron (AGS) of Brookhaven
National Laboratory (BNL), this feature was used in a series of precise
measurements of reactions with all-neutral final states. Here we concentrate on
the analysis of data from the pion-induced reactions: pi- p --> gamma n, pi- p
--> pi0 n, pi- p --> eta n, and pi- p --> pi0 pi0 n.Comment: Conference contribution to MESON 2006 - Krakow, Pola
Effect of exotic S=+1 resonances on scattering data
We consider the effect of an exotic S=+1 resonance on the
scattering of neutral kaons off protons. Explicit results are presented for the
total cross sections.Comment: 2 pages, 3 figure
Satellite power system: Concept development and evaluation program. Volume 3: Power transmission and reception. Technical summary and assessment
Efforts in the DOE/NASA concept development and evaluation program are discussed for the solar power satellite power transmission and reception system. A technical summary is provided together with a summary of system assessment activities. System options and system definition drivers are described. Major system assessment activities were in support of the reference system definition, solid state system studies, critical technology supporting investigations, and various system and subsystem tradeoffs. These activities are described together with reference system updates and alternative concepts for each of the subsystem areas. Conclusions reached as a result of the numerous analytical and experimental evaluations are presented. Remaining issues for a possible follow-on program are identified
Electronic Structure and Lattice dynamics of NaFeAs
The similarity of the electronic structures of NaFeAs and other Fe pnictides
has been demonstrated on the basis of first-principle calculations. The global
double-degeneracy of electronic bands along X-M and R-A direction indicates the
instability of Fe pnictides and is explained on the basis of a tight-binding
model. The de Haas-van Alphen parameters for the Fermi surface (FS) of NaFeAs
have been calculated. A spin density wave (SDW)
instead of a charge density wave (CDW) ground state is predicted based on the
calculated generalized susceptibility and a criterion
derived from a restricted Hatree-Fock model. The strongest electron-phonon
(e-p) coupling has been found to involve only As, Na z-direction vibration with
linear-response calculations. A possible enhancement mechanism for e-p coupling
due to correlation is suggested
Electromagnetic probe technique for fluid flow measurements
The probes described herein, in various configurations, permit the measurement of the volume fraction of two or more fluids flowing through a pipe. Each probe measures the instantaneous relative dielectric constant of the fluid in immediate proximity. As long as separation of the relative dielectric constant of the fluid is possible, several or even many fluids can be measured in the same flow stream. By using multiple probes, the velocity of each fluid can generally be determined as well as the distribution of each constituent in the pipe. The values are determined by statistical computation. There are many potential applications for probes of this type in industry and government. Possible NASA applications include measurements of helium/hydrazine flow during rocket tests at White Sands, liquid/gas flow in hydrogen or oxygen lines in Orbiter engines, and liquid/gaseous Freon flow in zero gravity tests with the KS135 aircraft at JSC. Much interest has been shown recently by the oil industry. In this a good method is needed to measure the fractions of oil, water, and natural gas flowing in a pipeline and the velocity of each. This particular problem involves an extension of what has been developed to date and our plans to solve this problem will be discussed herein
The distribution of polycomb-group proteins during cell division and development in Drosophila embryos: Impact on models for silencing
The subcellular three-dimensional distribution of three polycomb-group (PcG) proteins—polycomb, polyhomeotic and posterior sex combs—in fixed whole-mount Drosophila embryos was analyzed by multicolor confocal fluorescence microscopy. All three proteins are localized in complex patterns of 100 or more loci throughout most of the interphase nuclear volume. The rather narrow distribution of the protein intensities in the vast majority of loci argues against a PcG-mediated sequestration of repressed target genes by aggregation into subnuclear domains. In contrast to the case for PEV repression (Csink, A.K., and S. Henikoff. 1996. Nature. 381:529–531), there is a lack of correlation between the occurrence of PcG proteins and high concentrations of DNA, demonstrating that the silenced genes are not targeted to heterochromatic regions within the nucleus. There is a clear distinction between sites of transcription in the nucleus and sites of PcG binding, supporting the assumption that most PcG binding loci are sites of repressive complexes. Although the PcG proteins maintain tissue-specific repression for up to 14 cell generations, the proteins studied here visibly dissociate from the chromatin during mitosis, and disperse into the cytoplasm in a differential manner. Quantitation of the fluorescence intensities in the whole mount embryos demonstrate that the dissociated proteins are present in the cytoplasm. We determined that <2% of PH remains attached to late metaphase and anaphase chromosomes. Each of the three proteins that were studied has a different rate and extent of dissociation at prophase and reassociation at telophase. These observations have important implications for models of the mechanism and maintenance of PcG- mediated gene repression
Testing spontaneous localization theories with matter-wave interferometry
We propose to test the theory of continuous spontaneous localization (CSL) in
an all-optical time-domain Talbot-Lau interferometer for clusters with masses
exceeding 1000000 amu. By assessing the relevant environmental decoherence
mechanisms, as well as the growing size of the particles relative to the
grating fringes, we argue that it will be feasible to test the quantum
superposition principle in a mass range excluded by recent estimates of the CSL
effect.Comment: 4 pages, 3 figures; corresponds to published versio
- …