7 research outputs found
Extracting galactic binary signals from the first round of Mock LISA Data Challenges
We report on the performance of an end-to-end Bayesian analysis pipeline for
detecting and characterizing galactic binary signals in simulated LISA data.
Our principal analysis tool is the Blocked-Annealed Metropolis Hasting (BAM)
algorithm, which has been optimized to search for tens of thousands of
overlapping signals across the LISA band. The BAM algorithm employs Bayesian
model selection to determine the number of resolvable sources, and provides
posterior distribution functions for all the model parameters. The BAM
algorithm performed almost flawlessly on all the Round 1 Mock LISA Data
Challenge data sets, including those with many highly overlapping sources. The
only misses were later traced to a coding error that affected high frequency
sources. In addition to the BAM algorithm we also successfully tested a Genetic
Algorithm (GA), but only on data sets with isolated signals as the GA has yet
to be optimized to handle large numbers of overlapping signals.Comment: 13 pages, 4 figures, submitted to Proceedings of GWDAW-11 (Berlin,
Dec. '06
Search for a stochastic gravitational-wave signal in the second round of the Mock LISA Data Challenges
The analysis method currently proposed to search for isotropic stochastic
radiation of primordial or astrophysical origin with the Laser Interferometer
Space Antenna (LISA) relies on the combined use of two LISA channels, one of
which is insensitive to gravitational waves, such as the symmetrised Sagnac.
For this method to work, it is essential to know how the instrumental noise
power in the two channels are related to one another; however, no quantitative
estimates of this key information are available to date. The purpose of our
study is to assess the performance of the symmetrised Sagnac method for
different levels of prior information regarding the instrumental noise. We
develop a general approach in the framework of Bayesian inference and an
end-to-end analysis algorithm based on Markov Chain Monte Carlo methods to
compute the posterior probability density functions of the relevant model
parameters. We apply this method to data released as part of the second round
of the Mock LISA Data Challenges. For the selected (and somewhat idealised)
cases considered here, we find that a prior uncertainty of a factor ~2 in the
ratio between the power of the instrumental noise contributions in the two
channels allows for the detection of isotropic stochastic radiation. More
importantly, we provide a framework for more realistic studies of LISA's
performance and development of analysis techniques in the context of searches
for stochastic signals.Comment: 10 pages, 3 figures, GWDAW12 conference proceeding
A Three-Stage Search for Supermassive Black Hole Binaries in LISA Data
Gravitational waves from the inspiral and coalescence of supermassive
black-hole (SMBH) binaries with masses ~10^6 Msun are likely to be among the
strongest sources for the Laser Interferometer Space Antenna (LISA). We
describe a three-stage data-analysis pipeline designed to search for and
measure the parameters of SMBH binaries in LISA data. The first stage uses a
time-frequency track-search method to search for inspiral signals and provide a
coarse estimate of the black-hole masses m_1, m_2 and of the coalescence time
of the binary t_c. The second stage uses a sequence of matched-filter template
banks, seeded by the first stage, to improve the measurement accuracy of the
masses and coalescence time. Finally, a Markov Chain Monte Carlo search is used
to estimate all nine physical parameters of the binary. Using results from the
second stage substantially shortens the Markov Chain burn-in time and allows us
to determine the number of SMBH-binary signals in the data before starting
parameter estimation. We demonstrate our analysis pipeline using simulated data
from the first LISA Mock Data Challenge. We discuss our plan for improving this
pipeline and the challenges that will be faced in real LISA data analysis.Comment: 12 pages, 3 figures, submitted to Proceedings of GWDAW-11 (Berlin,
Dec. '06
The Mock LISA Data Challenges: from Challenge 1B to Challenge 3
The Mock LISA Data Challenges are a programme to demonstrate and encourage
the development of LISA data-analysis capabilities, tools and techniques. At
the time of this workshop, three rounds of challenges had been completed, and
the next was about to start. In this article we provide a critical analysis of
entries to the latest completed round, Challenge 1B. The entries confirm the
consolidation of a range of data-analysis techniques for Galactic and
massive--black-hole binaries, and they include the first convincing examples of
detection and parameter estimation of extreme--mass-ratio inspiral sources. In
this article we also introduce the next round, Challenge 3. Its data sets
feature more realistic waveform models (e.g., Galactic binaries may now chirp,
and massive--black-hole binaries may precess due to spin interactions), as well
as new source classes (bursts from cosmic strings, isotropic stochastic
backgrounds) and more complicated nonsymmetric instrument noise.Comment: 20 pages, 3 EPS figures. Proceedings of the 12th Gravitational Wave
Data Analysis Workshop, Cambridge MA, 13--16 December 2007. Typos correcte
The Mock LISA Data Challenges: from Challenge 3 to Challenge 4
The Mock LISA Data Challenges are a program to demonstrate LISA data-analysis
capabilities and to encourage their development. Each round of challenges
consists of one or more datasets containing simulated instrument noise and
gravitational waves from sources of undisclosed parameters. Participants
analyze the datasets and report best-fit solutions for the source parameters.
Here we present the results of the third challenge, issued in Apr 2008, which
demonstrated the positive recovery of signals from chirping Galactic binaries,
from spinning supermassive--black-hole binaries (with optimal SNRs between ~ 10
and 2000), from simultaneous extreme-mass-ratio inspirals (SNRs of 10-50), from
cosmic-string-cusp bursts (SNRs of 10-100), and from a relatively loud
isotropic background with Omega_gw(f) ~ 10^-11, slightly below the LISA
instrument noise.Comment: 12 pages, 2 figures, proceedings of the 8th Edoardo Amaldi Conference
on Gravitational Waves, New York, June 21-26, 200
Inference on inspiral signals using LISA MLDC data
In this paper we describe a Bayesian inference framework for analysis of data
obtained by LISA. We set up a model for binary inspiral signals as defined for
the Mock LISA Data Challenge 1.2 (MLDC), and implemented a Markov chain Monte
Carlo (MCMC) algorithm to facilitate exploration and integration of the
posterior distribution over the 9-dimensional parameter space. Here we present
intermediate results showing how, using this method, information about the 9
parameters can be extracted from the data.Comment: Accepted for publication in Classical and Quantum Gravity, GWDAW-11
special issu
Orbital effects of a monochromatic plane gravitational wave with ultra-low frequency incident on a gravitationally bound two-body system
We analytically compute the long-term orbital variations of a test particle
orbiting a central body acted upon by an incident monochromatic plane
gravitational wave. We assume that the characteristic size of the perturbed
two-body system is much smaller than the wavelength of the wave. Moreover, we
also suppose that the wave's frequency is much smaller than the particle's
orbital one. We make neither a priori assumptions about the direction of the
wavevector nor on the orbital geometry of the planet. We find that, while the
semi-major axis is left unaffected, the eccentricity, the inclination, the
longitude of the ascending node, the longitude of pericenter and the mean
anomaly undergo non-vanishing long-term changes. They are not secular trends
because of the slow modulation introduced by the tidal matrix coefficients and
by the orbital elements themselves. They could be useful to indepenedently
constrain the ultra-low frequency waves which may have been indirectly detected
in the BICEP2 experiment. Our calculation holds, in general, for any
gravitationally bound two-body system whose characteristic frequency is much
larger than the frequency of the external wave. It is also valid for a generic
perturbation of tidal type with constant coefficients over timescales of the
order of the orbital period of the perturbed particle.Comment: LaTex2e, 24 pages, no figures, no tables. Changes suggested by the
referees include