7,115 research outputs found

    From a Kac-like particle system to the Landau equation for hard potentials and Maxwell molecules

    Full text link
    We prove a quantitative result of convergence of a conservative stochastic particle system to the solution of the homogeneous Landau equation for hard potentials. There are two main difficulties: (i) the known stability results for this class of Landau equations concern regular solutions and seem difficult to extend to study the rate of convergence of some empirical measures; (ii) the conservativeness of the particle system is an obstacle for (approximate) independence. To overcome (i), we prove a new stability result for the Landau equation for hard potentials concerning very general measure solutions. Due to (ii), we have to couple, our particle system with some non independent nonlinear processes, of which the law solves, in some sense, the Landau equation. We then prove that these nonlinear processes are not so far from being independent. Using finally some ideas of Rousset [25], we show that in the case of Maxwell molecules, the convergence of the particle system is uniform in time

    Geometric realizations of two dimensional substitutive tilings

    Full text link
    We define 2-dimensional topological substitutions. A tiling of the Euclidean plane, or of the hyperbolic plane, is substitutive if the underlying 2-complex can be obtained by iteration of a 2-dimensional topological substitution. We prove that there is no primitive substitutive tiling of the hyperbolic plane H2\mathbb{H}^2. However, we give an example of substitutive tiling of \Hyp^2 which is non-primitive.Comment: 30 pages, 13 figure

    On the stability of 2D dipolar Bose-Einstein condensates

    Full text link
    We study the existence of energy minimizers for a Bose-Einstein condensate with dipole-dipole interactions, tightly confined to a plane. The problem is critical in that the kinetic energy and the (partially attractive) interaction energy behave the same under mass-preserving scalings of the wave-function. We obtain a sharp criterion for the existence of ground states, involving the optimal constant of a certain generalized Gagliardo-Nirenberg inequality

    Exploring pure quantum states with maximally mixed reductions

    Full text link
    We investigate multipartite entanglement for composite quantum systems in a pure state. Using the generalized Bloch representation for n-qubit states, we express the condition that all k-qubit reductions of the whole system are maximally mixed, reflecting maximum bipartite entanglement across all k vs. n-k bipartitions. As a special case, we examine the class of balanced pure states, which are constructed from a subset of the Pauli group P_n that is isomorphic to Z_2^n. This makes a connection with the theory of quantum error-correcting codes and provides bounds on the largest allowed k for fixed n. In particular, the ratio k/n can be lower and upper bounded in the asymptotic regime, implying that there must exist multipartite entangled states with at least k=0.189 n when nn\to \infty. We also analyze symmetric states as another natural class of states with high multipartite entanglement and prove that, surprisingly, they cannot have all maximally mixed k-qubit reductions with k>1. Thus, measured through bipartite entanglement across all bipartitions, symmetric states cannot exhibit large entanglement. However, we show that the permutation symmetry only constrains some components of the generalized Bloch vector, so that very specific patterns in this vector may be allowed even though k>1 is forbidden. This is illustrated numerically for a few symmetric states that maximize geometric entanglement, revealing some interesting structures.Comment: 10 pages, 2 figure

    Wage share variations in France and Germany since 1970: what does really matter?

    Get PDF
    This paper refers to a few recent studies, which have focused on methodological issues related to the estimation of the wage share variations, to compare the evolutions in France and former West Germany since 1970. It is shown that the usual method overestimates the long run drop of wage share in both countries but that the magnitude and thus the contribution of different biases are quite different in France and Germany. However no bias can explain the sharp drop of wage share in Germany since 2001, which has to be analysed within the framework of the euro area.Income distribution, Wage share, International comparison

    New Quarkonium Results from the BABAR experiment

    Get PDF
    New BABAR results on B mesons and quarkonia are presented: an analysis of B+ --> X(3872)K+ and B0 --> X(3872)K0 decays with X(3872) --> J/Psi pi+pi-, a precise measurement of the B mass difference Delta mB = m(B0) - m(B+) and a study of hadronic transition between Upsilon mesons.Comment: 4 pages, 6 postscript figues, contributed to the Proceedings of Moriond QCD 200

    ATLsc with partial observation

    Full text link
    Alternating-time temporal logic with strategy contexts (ATLsc) is a powerful formalism for expressing properties of multi-agent systems: it extends CTL with strategy quantifiers, offering a convenient way of expressing both collaboration and antagonism between several agents. Incomplete observation of the state space is a desirable feature in such a framework, but it quickly leads to undecidable verification problems. In this paper, we prove that uniform incomplete observation (where all players have the same observation) preserves decidability of the model-checking problem, even for very expressive logics such as ATLsc.Comment: In Proceedings GandALF 2015, arXiv:1509.0685

    Synchronized sweep algorithms for scalable scheduling constraints

    Get PDF
    This report introduces a family of synchronized sweep based filtering algorithms for handling scheduling problems involving resource and precedence constraints. The key idea is to filter all constraints of a scheduling problem in a synchronized way in order to scale better. In addition to normal filtering mode, the algorithms can run in greedy mode, in which case they perform a greedy assignment of start and end times. The filtering mode achieves a significant speed-up over the decomposition into independent cumulative and precedence constraints, while the greedy mode can handle up to 1 million tasks with 64 resources constraints and 2 million precedences. These algorithms were implemented in both CHOCO and SICStus

    On the Linear Extension Complexity of Regular n-gons

    Full text link
    In this paper, we propose new lower and upper bounds on the linear extension complexity of regular nn-gons. Our bounds are based on the equivalence between the computation of (i) an extended formulation of size rr of a polytope PP, and (ii) a rank-rr nonnegative factorization of a slack matrix of the polytope PP. The lower bound is based on an improved bound for the rectangle covering number (also known as the boolean rank) of the slack matrix of the nn-gons. The upper bound is a slight improvement of the result of Fiorini, Rothvoss and Tiwary [Extended Formulations for Polygons, Discrete Comput. Geom. 48(3), pp. 658-668, 2012]. The difference with their result is twofold: (i) our proof uses a purely algebraic argument while Fiorini et al. used a geometric argument, and (ii) we improve the base case allowing us to reduce their upper bound 2log2(n)2 \left\lceil \log_2(n) \right\rceil by one when 2k1<n2k1+2k22^{k-1} < n \leq 2^{k-1}+2^{k-2} for some integer kk. We conjecture that this new upper bound is tight, which is suggested by numerical experiments for small nn. Moreover, this improved upper bound allows us to close the gap with the best known lower bound for certain regular nn-gons (namely, 9n139 \leq n \leq 13 and 21n2421 \leq n \leq 24) hence allowing for the first time to determine their extension complexity.Comment: 20 pages, 3 figures. New contribution: improved lower bound for the boolean rank of the slack matrices of n-gon
    corecore