22 research outputs found

    A simple and generic CAD/CAM approach for AFM probe-based machining

    Get PDF
    Atomic Force Microscopy (AFM) probe-based machining allows surface structuring at the nano-scale via the mechanical modification of material. This results from the direct contact between the tip of an AFM probe and the surface of a sample. Given that AFM instruments are primarily developed for obtaining high-resolution topography information of inspected specimen, raster scanning typically defines the trajectory followed by the tip of an AFM probe. Although most AFM manufacturers provide software modules to perform user-defined tip displacement operations, such additional solutions can be limited with respect to 1) the range of tip motions that can be designed, 2) the level of automation when defining tip displacement strategies and 3) the portability for easily transferring trajectories data between different AFM instruments. In this context, this research presents a feasibility study, which aims to demonstrate the applicability of a simple and generic CAD/CAM approach when implementing AFM probe-based nano-machining for producing two-dimensional (2D) features with a commercial AFM instrument

    A simple and generic CAD/CAM approach for AFM probe-based machining

    Get PDF
    Atomic Force Microscopy (AFM) probe-based machining allows surface structuring at the nano-scale via the mechanical modification of material. This results from the direct contact between the tip of an AFM probe and the surface of a sample. Given that AFM instruments are primarily developed for obtaining high-resolution topography information of inspected specimen, raster scanning typically defines the trajectory followed by the tip of an AFM probe. Although most AFM manufacturers provide software modules to perform user-defined tip displacement operations, such additional solutions can be limited with respect to 1) the range of tip motions that can be designed, 2) the level of automation when defining tip displacement strategies and 3) the portability for easily transferring trajectories data between different AFM instruments. In this context, this research presents a feasibility study, which aims to demonstrate the applicability of a simple and generic CAD/CAM approach when implementing AFM probe-based nano-machining for producing two-dimensional (2D) features with a commercial AFM instrument

    Impact reduction during running: efficiency of simple acute interventions in recreational runners

    Get PDF
    International audienceRunning-related stress fractures have been associated with the overall impact intensity, which has recently been described through the loading rate (LR). Our purpose was to evaluate the effects of four acute interventions with specific focus on LR: wearing racing shoes (RACE), increasing step frequency by 10 % (FREQ), adopting a midfoot strike pattern (MIDFOOT) and combining these three interventions (COMBI). Nine rearfoot-strike subjects performed five 5-min trials during which running kinetics, kinematics and spring-mass behavior were measured for ten consecutive steps on an instrumented treadmill. Electromyographic activity of gastrocnemius lateralis, tibialis anterior, biceps femoris and vastus lateralis muscles was quantified over different phases of the stride cycle. LR was significantly and similarly reduced in MIDFOOT (37.4 ± 7.20 BW s(-1), -56.9 ± 50.0 %) and COMBI (36.8 ± 7.15 BW s(-1), -55.6 ± 29.2 %) conditions compared to NORM (56.3 ± 11.5 BW s(-1), both P<0.001). RACE (51.1 ± 9.81 BW s(-1)) and FREQ (52.7 ± 11.0 BW s(-1)) conditions had no significant effects on LR. Running with a midfoot strike pattern resulted in a significant increase in gastrocnemius lateralis pre-activation (208 ± 97.4 %, P<0.05) and in a significant decrease in tibialis anterior EMG activity (56.2 ± 15.5 %, P<0.05) averaged over the entire stride cycle. The acute attenuation of foot-ground impact seems to be mostly related to the use of a midfoot strike pattern and to a higher pre-activation of the gastrocnemius lateralis. Further studies are needed to test these results in prolonged running exercises and in the long term

    Atomic-scale Interface structure of a Cr-coated Zircaloy-4 material

    No full text
    International audienceHighly adherent, thin Cr coatings on Zr-based nuclear fuel claddings can be potentially used for the development of accident-tolerant fuels in light water reactors. To guarantee the successful implementation of Cr-coated Zr alloys as cladding tubes in nuclear power plants, the adhesive strength of the Cr coatings must be assessed. The interface between Cr and Zr was characterized via high-resolution transmission electron microscopy. We observed the formation of nanometer-thick Zr(Fe, Cr)2 poly-type, structured Laves phases at the interfacial region that display both C14 and C15 lattice symmetries. Although the crystallinity was preserved throughout the interfacial region, different atomic configurations were observed for all the interfaces studied. In most cases, coherent or semicoherent crystallographic relationships were observed, ensuring the adhesive strength of the coating

    Modeling and Experimental Study of Long Term Creep Damage in Austenitic Stainless Steels

    Get PDF
    International audienceOne of the main challenges for some reactors components in austenitic stainless steels at high temperature in-service conditions is the demonstration of their behavior up to 60 years. The creep lifetimes of these stainless steels require on the one hand to carry out very long term creep tests and on the other hand to understand and to model the damage mechanisms in order to propose physically-based predictions toward 60 years of service. Different batches of austenitic stainless steels like-type 316L with low carbon and closely specified nitrogen content, 316L(N), are subjected to numerous creep tests carried out at various stresses and temperatures between 525 °C and 700 °C up to nearly 50 • 103 h

    Nano-size metallic oxide particle synthesis in Fe-Cr alloys by ion implantation

    No full text
    International audienceOxide Dispersion Strengthened (ODS) steels reinforced with metal oxide nanoparticles are advanced structural materials for nuclear and thermonuclear reactors. The understanding of the mechanisms involved in the precipitation of nano-oxides can help in improving mechanical properties of ODS steels, with a strong impact for their commercialization. A perfect tool to study these mechanisms is ion implantation, where various precipitate synthesis parameters are under control. In the framework of this approach, high-purity Fe-10Cr alloy samples were consecutively implanted with Al and O ions at room temperature and demonstrated a number of unexpected features. For example, oxide particles of a few nm in diameter could be identified in the samples already after ion implantation at room temperature. This is very unusual for ion beam synthesis, which commonly requires post-implantation high-temperature annealing to launch precipitation. The observed particles were composed of aluminium and oxygen, but additionally contained one of the matrix elements (chromium). The crystal structure of aluminium oxide compound corresponds to non-equilibrium cubic γ-Al2O3 phase rather than to more common corundum. The obtained experimental results together with the existing literature data give insight into the physical mechanisms involved in the precipitation of nano-oxides in ODS alloys

    HRTEM and chemical study of an ion-irradiated chromium/zircaloy-4 interface

    No full text
    International audienceChromium-coated zirconium alloys are being studied as Enhanced Accident Tolerant Fuel Cladding for Light Water Reactors (LWRs). Those materials are especially studied to improve the oxidation resistance of LWRs current fuel claddings in nominal and at High Temperature (HT) for hypothetical accidental conditions such as LOss of Coolant Accident. Beyond their HT behavior, it is essential to assess the materials behavior under irradiation. A first generation chromium/Zircaloy-4 interface was thus irradiated with 20 MeV Kr8+^{8+} ions at 400°C up to 10 dpa. High-Resolution Transmission Electron Microscopy and chemical analysis (EDS) were conducted at the Cr/Zr interface. The atomic structure of the interface reveals the presence of Zr(Fe, Cr)2_2 Laves phase, displaying both C14 and C15 structure. After irradiation, only the C14 structure was observed and atomic row matching was preserved across the different interfaces , thus ensuring a good adhesion of the coating after irradiation
    corecore