52 research outputs found

    Geochemistry of low-molecular weight hydrocarbons in hydrothermal fluids from Middle Valley, northern Juan de Fuca Ridge

    Get PDF
    Author Posting. © Elsevier B.V., 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 70 (2006): 2073-2092, doi:10.1016/j.gca.2006.01.015.Hydrothermal vent fluids from Middle Valley, a sediment-covered mid-ocean ridge on the northern Juan de Fuca Ridge, were sampled in July, 2000. Eight different vents with exit temperatures of 186 to 281°C were sampled from two areas of venting: the Dead Dog and ODP Mound fields. Fluids from the Dead Dog field are characterized by higher concentrations of ΣNH3 and organic compounds (C1-C4 alkanes, ethene, propene, benzene and toluene) compared with fluids from the ODP Mound field. The ODP Mound fluids, however, are characterized by higher C1/(C2+C3) and benzene:toluene ratios than those from the Dead Dog field. The aqueous organic compounds in these fluids have been derived from both bacterial processes (methanogenesis in low-temperature regions during recharge) as well as from thermogenic processes in higher-temperature portions of the subsurface reaction zone. As the sediments undergo hydrothermal alteration, carbon dioxide and hydrocarbons are released to solution as organic matter degrades via a stepwise oxidation process. Compositional and isotopic differences in the aqueous hydrocarbons indicate that maximum subsurface temperatures at the ODP Mound are greater than those at the Dead Dog field. Maximum subsurface temperatures were calculated assuming that thermodynamic equilibrium is attained between alkenes and alkanes, benzene and toluene, and carbon dioxide and methane. The calculated temperatures for alkene-alkane equilibrium are consistent with differences in the dissolved Cl concentrations in fluids from the two fields, and indicate that subsurface temperatures at the ODP Mound are hotter than those at the Dead Dog field. Temperatures calculated assuming benzene-toluene equilibrium and carbon dioxide-methane equilibrium are similar to observed exit temperatures, and do not record the hottest subsurface conditions. The difference in subsurface temperatures estimated using organic geochemical thermometers reflects subsurface cooling processes via mixing of a hot, low-salinity vapor with a cooler, seawater salinity fluid. Because of the disparate temperature dependence of alkene-alkane and benzene-toluene equilibria, the mixed fluid records both the high and low temperature equilibrium conditions. These calculations indicate that vapor-rich fluids are presently being formed in the crust beneath the ODP Mound, yet do not reach the surface due to mixing with the lower-temperature fluids.This work was funded by NSF OCE-9906752

    The boron isotope systematics of Icelandic geothermal waters: 1. Meteoric water charged systems

    No full text
    We have measured the boron isotope composition and boron and chloride concentrations of 27 Icelandic geothermal fluids from both high- and low-temperature systems. The ?11B values range from -6.7‰ in the Krafla system, to +25.0‰ in a warm spring from the Southern Lowlands. In addition, we have also determined the ?11B values of basaltic glass from Nesjavellir (-5.3 ± 1.4‰) and travertine from Snaefellsnes (-22 ± 0.5‰). The B isotope and Cl/B systematics of the high-temperature systems are dominated by the composition of the local basalts. The lower temperature systems show evidence for mixing with B and Cl of a marine origin, together with some uptake of B into secondary mineral phases. The data from the Snaefellsnes geothermal system indicate that the fluids have undergone interaction with basalts that have undergone significant low-temperature alteration by seawater

    Geologic controls on supercritical geothermal resources above magmatic intrusions

    No full text
    A new and economically attractive type of geothermal resource was recently discovered in the Krafla volcanic system, Iceland, consisting of supercritical water at 450 °C immediately above a 2-km deep magma body. Although utilizing such supercritical resources could multiply power production from geothermal wells, the abundance, location and size of similar resources are undefined. Here we present the first numerical simulations of supercritical geothermal resource formation, showing that they are an integral part of magma-driven geothermal systems. Potentially exploitable resources form in rocks with a brittle–ductile transition temperature higher than 450 °C, such as basalt. Water temperatures and enthalpies can exceed 400 °C and 3 MJ kg(−1), depending on host rock permeability. Conventional high-enthalpy resources result from mixing of ascending supercritical and cooler surrounding water. Our models reproduce the measured thermal conditions of the resource discovered at Krafla. Similar resources may be widespread below conventional high-enthalpy geothermal systems
    corecore