11,318 research outputs found

    Laboratory arc furnace features interchangeable hearths

    Get PDF
    Laboratory arc furnace using rapidly interchangeable hearths gains considerable versatility in casting so that buttons or special shaped castings can be produced. It features a sight glass for observation

    Status and plans of NASA's Materials Science and Manufacturing in Space (MS/MS) program

    Get PDF
    A description is given of a research and development program on the space shuttle mission designed to prepare the way for possible commercial manufacturing operations on permanently orbiting space stations

    Flexible copper-indium-diselenide films and devices for space applications

    Get PDF
    With the ever increasing demands on space power systems, it is imperative that low cost, lightweight, reliable photovoltaics be developed. One avenue of pursuit for future space power applications is the use of low cost, lightweight flexible PV cells and arrays. Most work in this area assumes the use of flexible amorphous silicon (a-Si), despite its inherent instability and low efficiencies. However, polycrystalline thin film PV such as copper-indium-diselenide (CIS) are inherently more stable and exhibit better performance than a-Si. Furthermore, preliminary data indicate that CIS also offers exciting properties with respect to space applications. However, CIS has only heretofore only produced on rigid substrates. The implications of flexible CIS upon present and future space power platforms was explored. Results indicate that space qualified CIS can dramatically reduce the cost of PV, and in most cases, can be substituted for silicon (Si) based on end-of-life (EOL) estimations. Furthermore, where cost is a prime consideration, CIS can become cost effective than gallium arsenide (GaAs) in some applications. Second, investigations into thin film deposition on flexible substrates were made, and data from these tests indicate that fabrication of flexible CIS devices is feasible. Finally, data is also presented on preliminary TCO/CdS/CuInSe2/Mo devices

    Implementation of Time-Delay Interferometry for LISA

    Full text link
    We discuss the baseline optical configuration for the Laser Interferometer Space Antenna (LISA) mission, in which the lasers are not free-running, but rather one of them is used as the main frequency reference generator (the {\it master}) and the remaining five as {\it slaves}, these being phase-locked to the master (the {\it master-slave configuration}). Under the condition that the frequency fluctuations due to the optical transponders can be made negligible with respect to the secondary LISA noise sources (mainly proof-mass and shot noises), we show that the entire space of interferometric combinations LISA can generate when operated with six independent lasers (the {\it one-way method}) can also be constructed with the {\it master-slave} system design. The corresponding hardware trade-off analysis for these two optical designs is presented, which indicates that the two sets of systems needed for implementing the {\it one-way method}, and the {\it master-slave configuration}, are essentially identical. Either operational mode could therefore be implemented without major implications on the hardware configuration. We then.......Comment: 39 pages, 6 figures, 2 table

    Reassessing the Value of Regional Climate Modeling Using Paleoclimate Simulations

    Get PDF
    Regional climate models (RCMs) are often assumed to be more skillful compared to lower-resolution general circulation models (GCM). However, RCMs are driven by input from coarser resolution GCMs, which may introduce biases. This study employs versions of the HadAMB3 GCM at three resolutions (>50 km) to investigate the added value of higher resolution using identically configured simulations of the preindustrial (PI), mid-Holocene, and Last Glacial Maximum. The RCM shows improved PI climatology compared to the coarse-resolution GCM and enhanced paleoanomalies in the jet stream and storm tracks. However, there is no apparent improvement when compared to proxy reconstructions. In the high-resolution GCM, accuracy in PI climate and atmospheric anomalies are enhanced despite its intermediate resolution. This indicates that synoptic and mesoscale features in a RCM are influenced by its low-resolution input, which impacts the simulated climatology. This challenges the paradigm that RCMs improve the representation of climate conditions and change.Peer reviewe

    A simulated Northern Hemisphere terrestrial climate dataset for the past 60,000 years

    Get PDF
    We present a continuous land-based climate reconstruction dataset extending back 60 kyr from 0 BP (1950) at 0.5 degrees resolution on a monthly timestep for 0 degrees N to 90 degrees N. It has been generated from 42 discrete snapshot simulations using the HadCM3B-M2.1 coupled general circulation model. We incorporate Dansgaard-Oeschger (DO) and Heinrich events to represent millennial scale variability, based on a temperature reconstruction from Greenland ice-cores, with a spatial fingerprint based on a freshwater hosing simulation with HadCM3B-M2.1. Interannual variability is also added and derived from the initial snapshot simulations. Model output has been downscaled to 0.5 degrees resolution (using simple bilinear interpolation) and bias corrected. Here we present surface air temperature, precipitation, incoming shortwave energy, minimum monthly temperature, snow depth, wind chill and number of rainy days per month. This is one of the first open access climate datasets of this kind and can be used to study the impact of millennial to orbital-scale climate change on terrestrial greenhouse gas cycling, northern extra-tropical vegetation, and megaflora and megafauna population dynamics.Peer reviewe

    EVM and Achievable Data Rate Analysis of Clipped OFDM Signals in Visible Light Communication

    Get PDF
    Orthogonal frequency division multiplexing (OFDM) has been considered for visible light communication (VLC) thanks to its ability to boost data rates as well as its robustness against frequency-selective fading channels. A major disadvantage of OFDM is the large dynamic range of its time-domain waveforms, making OFDM vulnerable to nonlinearity of light emitting diodes (LEDs). DC biased optical OFDM (DCO-OFDM) and asymmetrically clipped optical OFDM (ACO-OFDM) are two popular OFDM techniques developed for the VLC. In this paper, we will analyze the performance of the DCO-OFDM and ACO-OFDM signals in terms of error vector magnitude (EVM), signal-to-distortion ratio (SDR), and achievable data rates under both average optical power and dynamic optical power constraints. EVM is a commonly used metric to characterize distortions. We will describe an approach to numerically calculate the EVM for DCO-OFDM and ACO-OFDM. We will derive the optimum biasing ratio in the sense of minimizing EVM for DCO-OFDM. Additionally, we will formulate the EVM minimization problem as a convex linear optimization problem and obtain an EVM lower bound against which to compare the DCO-OFDM and ACO-OFDM techniques. We will prove that the ACO-OFDM can achieve the lower bound. Average optical power and dynamic optical power are two main constraints in VLC. We will derive the achievable data rates under these two constraints for both additive white Gaussian noise (AWGN) channel and frequency-selective channel. We will compare the performance of DCO-OFDM and ACO-OFDM under different power constraint scenarios

    A practical high current 11 MeV production of high specific activity 89Zr

    Get PDF
    Introduction Zr-89 is a useful radionuclide for radiolabeling proteins and other molecules.1,2 There are many reports of cyclotron production of 89Zr by the 89Y (p,n) reaction. Most irradiations use thin metal backed deposits of Y and irradiation currents up to 100 ĀµA or thicker amounts of Y or Y2O3 with ~ 20 ĀµA irradiations.3,4 We are working to develop high specific activity 89Zr using a low energy 11 MeV cyclotron. We have found that target Y metal contains carrier Zr and higher specific activities are achieved with less Y. The goal of this work was to optimize yield while minimizing the amount of Y that was irradiated. Material and Methods All irradiations were done using a Siemens Eclipse 11 MeV proton cyclotron. Y foils were used for the experiments described here. Y2O3 was tried and abandoned due to lower yield and poor heat transfer. Yttrium metal foils from Alfa Aesar, ESPI Metals and Sigma Aldrich, 0.1 to 1 mm in thickness, were tested. Each foil was irradiated for 10 to 15 minutes. The targets to hold the Y foils were made of aluminum and were designed to fit within the ā€œpaper burnā€ unit of the Siemenā€™s Eclipse target station, allowing the Y target body to be easily inserted and removed from the system. Several Al targets of 2 cm diam. and 7.6 cm long were tested with the face of the targets from 11, 26 or 90o relative to the beam to vary watts cmāˆ’2 on the foil. The front of the foils was cooled by He convection and the foil backs by conduction to the Al target body. The target body was cooled by conduction to the water cooled Al sleeve of the target holder. Results and Conclusion The best target was two stacked, 0.25 mm thick, foils to stop beam. 92% of the 89Zr activity was in the front 0.25 mm Y foil. With the greatest slant we could irradiate up to 30 ĀµA of beam on tar-get. However, the 13Ɨ30 mm dimensions of the foil was more mass (0.41 g) and lower specific activity than was desired. Redesign of the target gave a target 90o to the beam with 12Ɨ12 mm foils (0.15 g/foil) that were undamaged with up to 30 ĀµA irradiation when two foils were used. This design has a reduction in beam at the edges of ~10%. With this design, a single Y foil, 0.25 mm thick sustained over 31 ĀµA of beam and a peak power on target of 270 watts cmāˆ’2. The product was radionuclidically pure 89Zr after all 89mZr and small amounts of 13N produced from oxygen at the surface had decayed (TABLE 1). Our conclusion is that the optimum target is a single 0.25 mm thick Y foil to obtain the greatest specific activity at this proton energy. This produces 167 MBq of 89Zr at EOB with a 15 minute and 31 ĀµA irradiation. We are continuing to redesign the clamp design to reduce losses at the edge of the beam
    • ā€¦
    corecore