108 research outputs found
Caribou conservation and recovery in Ontario: development and implementation of the Caribou Conservation Plan
The range of Ontario’s woodland caribou (Rangifer tarandus caribou) (forest-dwelling ecotype) has receded northward substantially over many decades, leading to its current Threatened designation. Ontario released its Caribou Conservation Plan (CCP) in the fall of 2009. This policy responded to public input and recommendations from the Ontario Woodland Caribou Recovery Team and the Caribou Science Review Panel, and outlines conservation and recovery actions to conserve and recover caribou. Within an adaptive management framework, the CCP builds upon a recent history of managing at large landscape scales in Ontario to implement a range management approach as the basis for recovery actions. These commitments and actions include enhanced research and monitoring, improved caribou habitat planning at the landscape scale, an integrated range analysis approach using advanced assessment tools to evaluate thresholds of habitat amount, arrangement and disturbance, the assessment of probability of persistence, consideration of cumulative effects, meeting forest management silvicultural performance requirements, consideration of caribou recovery implications when managing other wildlife, an initial focus on the southern edge of caribou distribution where threats are most significant, improved outreach and stewardship, and consideration of Aboriginal Traditional Knowledge in recovery actions. Implementation of the CCP signifies a long-term provincial commitment to caribou recovery, initially focusing on identified priorities within the CCP
Structural and Evolutionary Analyses Show Unique Stabilization Strategies in the Type IV Pili of Clostridium difficile
Type IV pili are produced by many pathogenic Gram-negative bacteria and are important for processes as diverse as twitching motility, biofilm formation, cellular adhesion and horizontal gene transfer. However, many Gram-positive species, including C. difficile, also produce Type IV pili. Here, we identify the major subunit of the Type IV pili of C. difficile, PilA1, and describe multiple three-dimensional structures of PilA1, demonstrating the diversity found in three strains of C. difficile. We also model the incorporation of both PilA1 and a minor pilin, PilJ, into the pilus fiber. Although PilA1 contains no cysteine residues, and therefore cannot form the disulfide bonds found in all Gram-negative Type IV pilins, it adopts unique strategies to achieve a typical pilin fold. The structures of PilA1 and PilJ exhibit similarities with the Type IVb pilins from Gram-negative bacteria that suggest that the Type IV pili of C. difficile are involved in microcolony formation
Structure of \u3ci\u3eClostridium difficile\u3c/i\u3e PilJ Exhibits Unprecedented Divergence from Known Type IV Pilins
Type IV pili are produced by many pathogenic Gram-negative bacteria and are important for processes as diverse as twitching motility, cellular adhesion, and colonization. Recently, there has been an increased appreciation of the ability of Gram-positive species, including Clostridium difficile, to produce Type IV pili. Here we report the first three-dimensional structure of a Grampositive Type IV pilin, PilJ, demonstrate its incorporation into Type IV pili, and offer insights into how the Type IV pili of C. difficile may assemble and function. PilJ has several unique structural features, including a dual-pilin fold and the incorporation of a structural zinc ion. We show that PilJ is incorporated into Type IV pili in C. difficile and present a model in which the incorporation of PilJ into pili exposes the C-terminal domain of PilJ to create a novel interaction surface
Walking cadence affects rate of plantar foot temperature change but not final temperature in younger and older adults.
This study examined the relationship between (1) foot temperature in healthy individuals and walking cadence, (2) temperature change at different locations of the foot, and (3) temperature change and its relationship with vertical pressures exerted on the foot. Eighteen healthy adult volunteers (10 between 30 and 40 years - Age: 33.4±2.4years; 8 above 40 years - Age: 54.1±7.7years) were recruited. A custom-made insole with temperature sensors was placed directly onto the plantar surface of the foot and held in position using a sock. The foot was placed on a pressure sensor and the whole system placed in a canvas shoe. Participants visited the lab on three separate occasions when foot temperature and pressure data were recorded during walking on a treadmill at one of three cadences (80, 100, 120steps/min). The plantar foot temperature increased during walking in both age groups 30-40 years: 4.62±2.00°C, >40years: 5.49±2.30°C, with the rise inversely proportional to initial foot temperature (30-40 years: R(2)=-0.669, >40years: R(2)=-0.816). Foot temperature changes were not different between the two age groups or the different foot locations and did not depend on vertical pressures. Walking cadence affected the rate of change of plantar foot temperature but not the final measured value and no association between temperature change and vertical pressure was found. These results provide baseline values for comparing foot temperature changes in pathological conditions which could inform understanding of pathophysiology and support development of evidence based healthcare guidelines for managing conditions such as diabetic foot ulceration (DFU)
Lipopolysaccharide Renders Transgenic Mice Expressing Human Serum Amyloid P Component Sensitive to Shiga Toxin 2
Transgenic C57BL/6 mice expressing human serum amyloid P component (HuSAP) are resistant to Shiga toxin 2 (Stx2) at dosages that are lethal in HuSAP-negative wild-type mice. However, it is well established that Stx2 initiates extra-intestinal complications such as the haemolytic-uremic syndrome despite the presence of HuSAP in human sera. We now demonstrate that co-administering purified Escherichia coli O55 lipopolysaccharide (LPS), at a dosage of 300 ng/g body weight, to HuSAP-transgenic mice increases their susceptibility to the lethal effects of Stx2. The enhanced susceptibility to Stx2 correlated with an increased expression of genes encoding the pro-inflammatory cytokine TNFα and chemokines of the CXC and CC families in the kidneys of LPS-treated mice, 48 hours after the Stx2/LPS challenge. Co-administering the glucocorticoid dexamethasone, but not the LPS neutralizing cationic peptide LL-37, protected LPS-sensitized HuSAP-transgenic mice from lethal doses of Stx2. Dexamethasone protection was specifically associated with decreased expression of the same inflammatory mediators (CXC and CC-type chemokines and TNFα) linked to enhanced susceptibility caused by LPS. The studies reveal further details about the complex cascade of host-related events that are initiated by Stx2 as well as establish a new animal model system in which to investigate strategies for diminishing serious Stx2-mediated complications in humans infected with enterohemorrhagic E. coli strains
Crop Updates 2004 - Cereals
This session covers twenty eight papers from different authors:
PLENARY
1. Declining profitability in continuous cropping systems. Is more wheat the answer on Duplex soil? Dr Wal Anderson, Department of Agriculture
2. Disease implications of extending the wheat phase in low-medium rainfall areas, Dr Vivian Vanstone and Dr Robert Loughman, Department of Agriculture
3. Prolonged wheat phase on duplex soils – where do weeds set the boundary? Vanessa Stewart, Department of Agriculture
WHEAT AGRONOMY
4. Management of small grain screenings in wheat, Dr Wal Anderson and Dr Darshan Sharma, Department of Agriculture
5. Agronomic responses of new wheat varieties, Christine Zaicou-Kunesch, Dr Darshan Sharma, Brenda Shackley, Dr Mohammad Amjad, Dr Wal Anderson and Steve Penny,Department of Agriculture
6. Managing wheat yield reduction from wide rows, Dr Mohammad Amjad and Dr Wal Anderson, Department of Agriculture
7. Row spacing and stubble effect on wheat yield and ryegrass seed set, Glen Riethmuller, Department of Agriculture
8. Grain protein management – lessons learnt on the south coast, Jeremy Lemon, Department of Agriculture
9. Unravelling the mysteries of optimum seed rates, Dr Wal Anderson, Dr Darshan Sharma, Brenda Shackley and Mario D’Antuono, Department of Agriculture
10. Agronomic features for growing better wheat – south east agricultural region 2003, Dr Mohammad Amjad, Veronika Reck and Ben Curtis, Department of Agriculture
11. Agronomic responses of new wheat varieties – great southern agricultural region 2003, Brenda Shackley and Judith Devenish, Department of Agriculture
12. Variety specific responses of new wheat varieties – central agricultural region 2003, Dr Darshan Sharma and Dr Wal Anderson, Department of Agriculture
13. Agronomic responses of new wheat varieties – northern agricultural region 2003, Christine Zaicou-Kunesch, Melaine Kupsch and Anne Smith, Department of Agriculture
BARLEY AND OAT AGRONOMY
14. Gairdner for high rainfall – where does Baudin fit in? Blakely Paynter, Roslyn Jettnerand Leanne Schulz, Department of Agriculture
15. Oaten hay – varieties and agronomy, Blakely Paynter, Jocelyn Ball and Tom Sweeny, Department of Agriculture
NUTRITION
16. In-furrow fungicide applications in liquid fertiliser, Dr Stephen Loss, CSBP Ltd
17. Elemental sulphur as a fertiliser source in Western Australia, Ashleigh Brooks1A, Justin Fuery2, Geoff Anderson3 and Prof Zed Rengel1,1UWA, 2Summit FertilizerFertilisers and 3Department of Agriculture
18. Genetic variation in potassium efficiency of barley, Paul Damon and Prof. Zed Rengel, Faculty of Natural and Agricultural Sciences, UWA
19. Managing protein through strategic N applications, Eddy Pol and Dr Stephen Loss, CSBP Ltd
20. Nitrogen management for wheat in high rainfall cropping areas, Narelle Hill1, Ray Tugwell1, Dr Wal Anderson1, Ron McTaggart1and Nathan Moyes2, 1Department of Agriculture and 2Landmark
21. Flag smut resistance in current WA wheat varieties, John Majewski and Dr Manisha Shankar, Department of Agriculture
22. Rust resistance update for wheat varieties in WA, Dr Manisha Shankar, John Majewski and Jamie Piotrowski, Department of Agriculture
PESTS AND DISEASES
23. Stripe rust in WA – where was it and what can we learn from 2003? Dr Robert Loughman and Ciara Beard, Department of Agriculture
24. Foliar disease management – a key factor in the adoption of Baudin and Hamlin barley, Dr Kithsiri Jayasena, Dr Rob Loughman, Kazue Tanaka and Grey Poulish, Department of Agriculture
25. Validating aphid and virus risk forecasts for cereals, Dr Debbie Thackray, Rohan Prince and Dr Roger Jones, Department of Agriculture and Centre for Legumes in Mediterranean Agriculture
HARVESTING
26. Swathing Gairdner barley at 30% moisture, Peter Nelson¹ and Nigel Metz², ¹Cooperative Bulk Handling and ² Fitzgerald Biosphere Group
MODELLING
27. Development of a web based grower decision aid application for cereal growers, Dr Leisa Armstrong1, Yee Leong (Alex) Yung1and Dr Moin Salam2
1School of Computer and Information Science, Edith Cowan University; and
2Department of Agriculture
28. Wheat varieties updated in ‘Flowering Calculator’ – a model predicting flowering time, Brenda Shackley, Dr David Tennant, Dr Darshan Sharma and Christine Zaicou‑Kunesch, Department of Agricultur
Haemolysis during Sample Preparation Alters microRNA Content of Plasma
The presence of cell-free microRNAs (miRNAs) has been detected in a range of body fluids. The miRNA content of plasma/serum in particular has been proposed as a potential source of novel biomarkers for a number of diseases. Nevertheless, the quantification of miRNAs from plasma or serum is made difficult due to inefficient isolation and lack of consensus regarding the optimal reference miRNA. The effect of haemolysis on the quantification and normalisation of miRNAs in plasma has not been investigated in great detail. We found that levels of miR-16, a commonly used reference gene, showed little variation when measured in plasma samples from healthy volunteers or patients with malignant mesothelioma or coronary artery disease. Including samples with evidence of haemolysis led to variation in miR-16 levels and consequently decreased its ability to serve as a reference. The levels of miR-16 and miR-451, both present in significant levels in red blood cells, were proportional to the degree of haemolysis. Measurements of the level of these miRNAs in whole blood, plasma, red blood cells and peripheral blood mononuclear cells revealed that the miRNA content of red blood cells represents the major source of variation in miR-16 and miR-451 levels measured in plasma. Adding lysed red blood cells to non-haemolysed plasma allowed a cut-off level of free haemoglobin to be determined, below which miR-16 and miR-451 levels displayed little variation between individuals. In conclusion, increases in plasma miR-16 and miR-451 are caused by haemolysis. In the absence of haemolysis the levels of both miR-16 and miR-451 are sufficiently constant to serve as normalisers
Crop Updates 2006 - Lupins and Pulses
This session covers sixty six papers from different authors:
2005 LUPIN AND PULSE INDUSTRY HIGHLIGHTS
1. Lupin Peter White, Department of Agriculture
2. Pulses Mark Seymour, Department of Agriculture
3. Monthly rainfall at experimental sites in 2005
4. Acknowledgements Amelia McLarty EDITOR
5. Contributors
6. Background Peter White, Department of Agriculture
2005 REGIONAL ROUNDUP
7. Northern agricultural region Wayne Parker, Department of Agriculture
8. Central agricultural region Ian Pritchard and Bob French, Department of Agriculture
9. Great southern and lakes Rodger Beermier, Department of Agriculture
10. South east region Mark Seymour, Department of Agriculture
LUPIN AND PULSE PRODUCTION AGRONOMY AND GENETIC IMPROVEMENT
11. Lupin Peter White, Department of Agriculture
12. Narrow-leafed lupin breeding Bevan Buirchell, Department of Agriculture
13. Progress in the development of pearl lupin (Lupinus mutabilis) for Australian agriculture, Mark Sweetingham1,2, Jon Clements1, Geoff Thomas2, Roger Jones1, Sofia Sipsas1, John Quealy2, Leigh Smith1 and Gordon Francis1 1CLIMA, The University of Western Australia 2Department of Agriculture
14. Molecular genetic markers and lupin breeding, Huaan Yang, Jeffrey Boersma, Bevan Buirchell, Department of Agriculture
15. Construction of a genetic linkage map using MFLP, and identification of molecular markers linked to domestication genes in narrow-leafed lupin (Lupinus augustiflolius L) Jeffrey Boersma1,2, Margaret Pallotta3, Bevan Buirchell1, Chengdao Li1, Krishnapillai Sivasithamparam2 and Huaan Yang1 1Department of Agriculture, 2The University of Western Australia, 3Australian Centre for Plant Functional Genomics, South Australia
16. The first gene-based map of narrow-leafed lupin – location of domestication genes and conserved synteny with Medicago truncatula, M. Nelson1, H. Phan2, S. Ellwood2, P. Moolhuijzen3, M. Bellgard3, J. Hane2, A. Williams2, J. Fos‑Nyarko4, B. Wolko5, M. Książkiewicz5, M. Cakir4, M. Jones4, M. Scobie4, C. O’Lone1, S.J. Barker1, R. Oliver2, and W. Cowling1 1School of Plant Biology, The University of Western Australia, 2Australian Centre for Necrotrophic Fungal Pathogens, Murdoch University, 3Centre for Bioinformatics and Biological Computing, Murdoch University, 4School of Biological Sciences and Biotechnology, SABC, Murdoch University,5Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
17. How does lupin optimum density change row spacing? Bob French and Laurie Maiolo, Department of Agriculture
18. Wide row spacing and seeding rate of lupins with conventional and precision seeding machines Martin Harries, Jo Walker and Murray Blyth, Department of Agriculture
19. Influence of row spacing and plant density on lupin competition with annual ryegrass, Martin Harries, Jo Walker and Murray Blyth, Department of Agriculture
20. Effect of timing and speed of inter-row cultivation on lupins, Martin Harries, Jo Walker and Steve Cosh, Department of Agriculture
21. The interaction of atrazine herbicide rate and row spacing on lupin seedling survival, Martin Harries and Jo Walker Department of Agriculture
22. The banding of herbicides on lupin row crops, Martin Harries, Jo Walker and Murray Blyth, Department of Agriculture
23. Large plot testing of herbicide tolerance of new lupin lines, Wayne Parker, Department of Agriculture
24. Effect of seed source and simazine rate of seedling emergence and growth, Peter White and Greg Shea, Department of Agriculture
25. The effect of lupin row spacing and seeding rate on a following wheat crop, Martin Harries, Jo Walker and Dirranie Kirby, Department of Agriculture
26. Response of crop lupin species to row spacing, Leigh Smith1, Kedar Adhikari1, Jon Clements2 and Patrizia Guantini3, 1Department of Agriculture, 2CLIMA, The University of Western Australia, 3University of Florence, Italy
27. Response of Lupinus mutabilis to lime application and over watering, Peter White, Leigh Smith and Mark Sweetingham, Department of Agriculture
28. Impact of anthracnose on yield of Andromeda lupins, Geoff Thomas, Kedar Adhikari and Katie Bell, Department of Agriculture
29. Survey of lupin root health (in major production areas), Geoff Thomas, Ken Adcock, Katie Bell, Ciara Beard and Anne Smith, Department of Agriculture
30. Development of a generic forecasting and decision support system for diseases in the Western Australian wheatbelt, Tim Maling1, Art Diggle1,2, Debbie Thackray1, Kadambot Siddique1 and Roger Jones1,2 1CLIMA, The University of Western Australia, 2Department of Agriculture
31.Tanjil mutants highly tolerant to metribuzin, Ping Si1, Mark Sweetingham1,2, Bevan Buirchell1,2 and Huaan Yang l,2 1CLIMA, The University of Western Australia, 2Department of Agriculture
32. Precipitation pH vs. yield and functional properties of lupin protein isolate, Vijay Jayasena1, Hui Jun Chih1 and Ken Dods2 1Curtin University of Technology, 2Chemistry Centre
33. Lupin protein isolation with the use of salts, Vijay Jayasena1, Florence Kartawinata1,Ranil Coorey1 and Ken Dods2 1Curtin University of Technology, 2Chemistry Centre
34. Field pea, Mark Seymour, Department of Agriculture
35. Breeding highlights Kerry Regan1,2, Tanveer Khan1,2, Stuart Morgan1 and Phillip Chambers1 1Department of Agriculture, 2CLIMA, The University of Western Australia
36. Variety evaluation, Kerry Regan1,2, Tanveer Khan1,2, Jenny Garlinge1 and Rod Hunter1 1Department of Agriculture, 2CLIMA, The University of Western Australia
37. Days to flowering of field pea varieties throughout WA Mark Seymour1, Ian Pritchard1, Rodger Beermier1, Pam Burgess1 and Dr Eric Armstrong2 Department of Agriculture, 2NSW Department of Primary Industries, Wagga Wagga
38. Semi-leafless field peas yield more, with less ryegrass seed set, in narrow rows, Glen Riethmuller, Department of Agriculture
39. Swathing, stripping and other innovative ways to harvest field peas, Mark Seymour, Ian Pritchard, Rodger Beermier and Pam Burgess, Department of Agriculture
40. Pulse demonstrations, Ian Pritchard, Wayne Parker, Greg Shea, Department of Agriculture
41. Field pea extension – focus on field peas 2005, Ian Pritchard, Department of Agriculture
42. Field pea blackspot disease in 2005: Prediction versus reality, Moin Salam, Jean Galloway, Pip Payne, Bill MacLeod and Art Diggle, Department of Agriculture
43. Pea seed-borne mosaic virus in pulses: Screening for seed quality defects and virus resistance, Rohan Prince, Brenda Coutts and Roger Jones, Department of Agriculture, and CLIMA, The University of Western Australia
44. Yield losses from sowing field peas infected with pea seed-borne mosaic virus, Rohan Prince, Brenda Coutts and Roger Jones, Department of Agriculture, and CLIMA, The University of Western Australia
45. Desi chickpea, Wayne Parker, Department of Agriculture
46. Breeding highlights, Tanveer Khan 1,2, Pooran Gaur3, Kadambot Siddique2, Heather Clarke2, Stuart Morgan1and Alan Harris1, 1Department of Agriculture2CLIMA, The University of Western Australia, 3International Crop Research Institute for Semi Arid Tropics (ICRISAT), India
47. National chickpea improvement program, Kerry Regan1, Ted Knights2 and Kristy Hobson3,1Department of Agriculture, 2Agriculture New South Wales 3Department of Primary Industries, Victoria
48. Chickpea breeding lines in CVT exhibit excellent ascochyta blight resistance, Tanveer Khan1,2, Alan Harris1, Stuart Morgan1 and Kerry Regan1,2, 1Department of Agriculture, 2CLIMA, The University of Western Australia
49. Variety evaluation, Kerry Regan1,2, Tanveer Khan1,2, Jenny Garlinge2 and Rod Hunter2, 1CLIMA, The University of Western Australia 2Department of Agriculture
50. Desi chickpeas for the wheatbelt, Wayne Parker and Ian Pritchard, Department of Agriculture
51. Large scale demonstration of new chickpea varieties, Wayne Parker, MurrayBlyth, Steve Cosh, Dirranie Kirby and Chris Matthews, Department of Agriculture
52. Ascochyta management with new chickpeas, Martin Harries, Bill MacLeod, Murray Blyth and Jo Walker, Department of Agriculture
53. Management of ascochyta blight in improved chickpea varieties, Bill MacLeod1, Colin Hanbury2, Pip Payne1, Martin Harries1, Murray Blyth1, Tanveer Khan1,2, Kadambot Siddique2, 1Department of Agriculture, 2CLIMA, The University of Western Australia
54. Botrytis grey mould of chickpea, Bill MacLeod, Department of Agriculture
55. Kabuli chickpea, Kerry Regan, Department of Agriculture, and CLIMA, The University of Western Australia
56. New ascochyta blight resistant, high quality kabuli chickpea varieties, Kerry Regan1,2, Kadambot Siddique2, Tim Pope2 and Mike Baker1, 1Department of Agriculture, 2CLIMA, The University of Western Australia
57. Crop production and disease management of Almaz and Nafice, Kerry Regan and Bill MacLeod, Department of Agriculture, and CLIMA, The University of Western Australia
58. Faba bean,Mark Seymour, Department of Agriculture
59. Germplasm evaluation – faba bean, Mark Seymour1, Tim Pope2, Peter White1, Martin Harries1, Murray Blyth1, Rodger Beermier1, Pam Burgess1 and Leanne Young1,1Department of Agriculture, 2CLIMA, The University of Western Australia
60. Factors affecting seed coat colour of faba bean during storage, Syed Muhammad Nasar-Abbas1, Julie Plummer1, Kadambot Siddique2, Peter White 3, D. Harris4 and Ken Dods4.1The University of Western Australia, 2CLIMA, The University of Western Australia, 3Department of Agriculture, 4Chemistry Centre
61. Lentil,Kerry Regan, Department of Agriculture, and CLIMA, The University of Western Australia
62. Variety and germplasm evaluation, Kerry Regan1,2, Tim Pope2, Leanne Young1, Phill Chambers1, Alan Harris1, Wayne Parker1 and Michael Materne3, 1Department of Agriculture 2CLIMA, The University of Western Australia, 3Department of Primary Industries, Victoria
Pulse species
63. Land suitability for production of different crop species in Western Australia, Peter White, Dennis van Gool, and Mike Baker, Department of Agriculture
64. Genomic synteny in legumes: Application to crop breeding, Huyen Phan1, Simon Ellwood1, J. Hane1, Angela Williams1, R. Ford2, S. Thomas3 and Richard Oliver1,1Australian Centre of Necrotrophic Plant Pathogens, Murdoch University 2BioMarka, School of Agriculture and Food Systems, ILFR, University of Melbourne 3NSW Department of Primary Industries
65. ALOSCA – Development of a dry flow legume seed inoculant, Rory Coffey and Chris Poole, ALOSCA Technologies Pty Ltd
66. Genetic dissection of resistance to fungal necrotrophs in Medicago truncatula, Simon Ellwood1, Theo Pfaff1, Judith Lichtenzveig12, Lars Kamphuis1, Nola D\u27Souza1, Angela Williams1, Emma Groves1, Karam Singh2 and Richard Oliver1
1Australian Centre of Necrotrophic Plant Pathogens, Murdoch University, 2CSIRO Plant Industry
APPENDIX I: LIST OF COMMON ACRONYM
Mortality and pulmonary complications in patients undergoing surgery with perioperative sars-cov-2 infection: An international cohort study
Background The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (740%) had emergency surgery and 280 (248%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (261%) patients. 30-day mortality was 238% (268 of 1128). Pulmonary complications occurred in 577 (512%) of 1128 patients; 30-day mortality in these patients was 380% (219 of 577), accounting for 817% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 175 [95% CI 128-240], p<00001), age 70 years or older versus younger than 70 years (230 [165-322], p<00001), American Society of Anesthesiologists grades 3-5 versus grades 1-2 (235 [157-353], p<00001), malignant versus benign or obstetric diagnosis (155 [101-239], p=0046), emergency versus elective surgery (167 [106-263], p=0026), and major versus minor surgery (152 [101-231], p=0047). Interpretation Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research
- …