22,759 research outputs found

    Darbepoetin alfa given every 1 or 2 weeks alleviates anaemia associated with cancer chemotherapy.

    Get PDF
    In part A of this study, patients were randomised to cohorts receiving darbepoetin alfa at doses of 0.5 to 8.0 m.c.g x kg(-1) x wk(-1) or to a control group receiving epoetin alfa at an initial dose of 150 U x kg(-1) three times weekly. In part B, the cohorts were darbepoetin alfa 3.0 to 9.0 m.c.g x kg(-1) every 2 weeks or epoetin alfa, initial dose 40 000 U x wk(-1). Safety was assessed by adverse events, changes in blood pressure, and formation of antibodies to darbepoetin alfa. Efficacy was assessed by several haematologic endpoints, including change in haemoglobin from baseline. The adverse event profile of darbepoetin alfa was similar to that of epoetin alfa. No relationship between the rapidity of haemoglobin response and any adverse event was observed. No antibodies to darbepoetin alfa were detected. Higher doses of darbepoetin alfa increased the proportion of patients with a haemoglobin response and decreased the median time to response. The overall dose of darbepoetin alfa required to produce a mean increase in haemoglobin does not increase when the dosing interval is increased from 1 to 2 weeks. Therapy with darbepoetin alfa is safe and effective in producing a dose-related increase in haemoglobin levels in patients with cancer receiving chemotherapy

    Bound states of Dipolar Bosons in One-dimensional Systems

    Get PDF
    We consider one-dimensional tubes containing bosonic polar molecules. The long-range dipole-dipole interactions act both within a single tube and between different tubes. We consider arbitrary values of the externally aligned dipole moments with respect to the symmetry axis of the tubes. The few-body structures in this geometry are determined as function of polarization angles and dipole strength by using both essentially exact stochastic variational methods and the harmonic approximation. The main focus is on the three, four, and five-body problems in two or more tubes. Our results indicate that in the weakly-coupled limit the inter-tube interaction is similar to a zero-range term with a suitable rescaled strength. This allows us to address the corresponding many-body physics of the system by constructing a model where bound chains with one molecule in each tube are the effective degrees of freedom. This model can be mapped onto one-dimensional Hamiltonians for which exact solutions are known.Comment: 22 pages, 7 figures, revised versio

    Elimination of Clock Jitter Noise in Spaceborn Laser Interferometers

    Get PDF
    Space gravitational wave detectors employing laser interferometry between free-flying spacecraft differ in many ways from their laboratory counterparts. Among these differences is the fact that, in space, the end-masses will be moving relative to each other. This creates a problem by inducing a Doppler shift between the incoming and outgoing frequencies. The resulting beat frequency is so high that its phase cannot be read to sufficient accuracy when referenced to state-of-the-art space-qualified clocks. This is the problem that is addressed in this paper. We introduce a set of time-domain algorithms in which the effects of clock jitter are exactly canceled. The method employs the two-color laser approach that has been previously proposed, but avoids the singularities that arise in the previous frequency-domain algorithms. In addition, several practical aspects of the laser and clock noise cancellation schemes are addressed.Comment: 20 pages, 5 figure

    Phase space density and chiral symmetry restoration in relativistic heavy ion collisions

    Full text link
    The effect of altered hadron masses is studied for its effect with regard to final-state hadronic observables. It is shown that the final phase space densities of pions and kaons, which can be inferred experimentally, are sensitive to in-medium properties of the excited matter at earlier stages of the collision, but that the sensitivity is significantly moderated by interactions that change the effective numbers of pions and kaons during the latter part of the collision.Comment: 5 pages, 4 fig.

    Resource Control for Synchronous Cooperative Threads

    Get PDF
    We develop new methods to statically bound the resources needed for the execution of systems of concurrent, interactive threads. Our study is concerned with a \emph{synchronous} model of interaction based on cooperative threads whose execution proceeds in synchronous rounds called instants. Our contribution is a system of compositional static analyses to guarantee that each instant terminates and to bound the size of the values computed by the system as a function of the size of its parameters at the beginning of the instant. Our method generalises an approach designed for first-order functional languages that relies on a combination of standard termination techniques for term rewriting systems and an analysis of the size of the computed values based on the notion of quasi-interpretation. We show that these two methods can be combined to obtain an explicit polynomial bound on the resources needed for the execution of the system during an instant. As a second contribution, we introduce a virtual machine and a related bytecode thus producing a precise description of the resources needed for the execution of a system. In this context, we present a suitable control flow analysis that allows to formulte the static analyses for resource control at byte code level

    Search for muonic decays of the antiproton at the Fermilab Antiproton Accumulator

    Get PDF
    A search for antiproton decay has been made at the Fermilab Antiproton Accumulator. Limits are placed on six antiproton decay modes which contain a final-state muon. At the 90% C.L. we find that tau/B(mu gamma) > 5.0 x 10^4 yr, tau/B(mu pi0) > 4.8 x 10^4 yr, tau/B(mu eta) > 7.9 x 10^3 yr, tau/B(mu gamma gamma) > 2.3 x 10^4 yr, tau/B(mu K0S > 4.3 x 10^3 yr, and tau/B(mu K0L) > 6.5 x 10^3 yr.Comment: 8 pages + 3 Postscript figure

    Tackling Health Inequalities in Scotland: an Innovative Approach to Implement the ‘Early Years’ Policy into Practice

    Get PDF
    Major health inequalities existing across the world and are often closely linked with degrees of social disadvantage. Scotland is fully committed to tackling this major challenge of health and social inequalities. One key focus is ensuring that every child and young person has equal access to opportunities and health improvements. This is supported by a series of national guidelines and ‘early years’ policy drivers. To implement these policies in practice, one National Health Service (NHS) health board (Lanarkshire) in collaboration with the University of the West of Scotland (UWS), adopted an innovative approach to develop the Best Possible Start (BPS) program of focused activity to reshape ‘early years’ services and ways of working. The foundation for the program was the national transformational initiative ‘Getting it right for every child (GIRFEC)’. This is based on the belief that the developments of the child and their experiences in the early years have a major impact on the child’s future life chances. The early nurturing environment is seen crucial in influencing emotional attachment. The BPS program focused on reshaping and streamlining the related health services in the early years between preconception and early school years. This is incorporated in the universal pathway of care encompassing all ‘early years’ services and related professionals. This universal pathway of care is underpinned with evidence based practice, workforce development, building research capacity and influencing leadership in the workplace. This paper presents a detailed overview of the BPS program including the structure, strategic aims and the rationale underpinning the pathway of care
    • 

    corecore