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Abstract
We present high-accuracy calculations of ionization rates of helium at UV (195 nm)
wavelengths. The data are obtained from full-dimensionality integrations of the helium-laser
time-dependent Schrödinger equation. Comparison is made with our previously obtained data
at 390 nm and 780 nm. We show that scaling laws introduced by Parker et al extend
unmodified from the near-infrared limit into the UV limit. Static-field ionization rates of
helium are also obtained, again from time-dependent full-dimensionality integrations of the
helium Schrödinger equation. We compare the static-field ionization results with those of
Scrinzi et al and Themelis et al, who also treat the full-dimensional helium atom, but with
time-independent methods. Good agreement is obtained.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In a previous publication [1], we presented calculations of
single-ionization rates of helium at two Ti-Sapphire laser
wavelengths (390 nm and 780 nm). We showed that the
scaling properties of the rates in intensity and wavelength
could be described in terms of surprisingly simple laws
that could be derived directly from ponderomotive-shifted
perturbation theory: lowest-order perturbation theory in which
the ionization potential is modified to increase linearly with
intensity in order to correctly model the ponderomotive and
Stark shifts.

In this paper, we extend the discussion with new
calculations in both the high-frequency limit and the static-
field limit. The first set of calculations was performed at UV
wavelengths (195 nm) over an intensity range 0 < I < 32.0 ×
1014 W cm−2. The second set of calculations was performed
with static electric fields in the range 0 < E < 0.4 au. In both
cases, single-electron ionization rates were obtained from the
numerical integration of the full-dimensional time-dependent
Schrödinger equation as described in [1, 2]. The new data
allow us to refine and extend the discussion of scaling laws
introduced in [1]. As we shall see, the conclusions of [1] are
largely confirmed by the new data.

We begin the discussion with figure 1, a plot of the new
and the old results in the lower intensity range 0 < I < 16.0×
1014 W cm−2. Preliminary discussion of figure 1 will serve as
an introduction to a more detailed dicussion in the succeeding
sections. The helium atom is initially in its lowest energy
state. Bound-state resonances are smoothed away to clarify
the general trend of the rate curves, as described in [1]. In
section 3, unsmoothed data are presented.

The most prominent feature of figure 1 is the vertical
displacement of the rate curves. In sections 2 and 3, we
derive a formula for the displacement in terms of atomic
parameters and laser parameters. The frequency dependence
of the displacement is found to be a consequence of the fact that
the ionization in this limit is a multiphoton process, which to
good approximation obeys a power law, Rate(I) ∼ [(d0E)2]N

where E is the electric field, d0 an effective dipole moment
and N is the minimum number of photons required to free
an electron from a ponderomotive shifted ionization potential.
The vertical displacement (from the static results) divided by
the laser frequency squared has a near linear dependence on
the derivative of the ponderomotive shift with respect to the
laser intensity.

The cycle-averaged static rates shown in figure 1 are
obtained by averaging static-field rates over the range of
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Figure 1. Single-ionization rates of helium obtained from numerical integration of the full-dimensional time-dependent Schrödinger
equation. Multiphoton rates at 195 nm, 390 nm and 780 nm are shown, along with cycle-averaged static-field rates.

electric field strengths occurring in sinusoidally oscillating
electric fields. More precisely, the sinusoid is modelled as a
series of constant-strength (static) electric fields, (rectangles
under the sinusoid curve), and the ionization yields predicted
by static-field calculations are summed for each rectangle to
calculate the total ionization yield expected over a field period.
The result is translated into a rate (yield per field period divided
by field period), which is plotted in figure 1 against the time-
averaged intensity of the corresponding sinusoidal E-field.
The cycle averaging described above produces the same result
for any frequency sinusoid, but the resulting cycle-averaged
rates will not be physically valid for fields that vary so rapidly
that the atomic response is not adiabatic. The adiabatic limit
is discussed further in section 4.

A striking feature of figure 1 is the clear space between
the near infrared ionization results (780 nm) and the static-
field results. Although it is difficult to see on the scale of
figure 1, the 780 nm rates exceed the static rates by factors of
100, 8, 3 and 2 at intensities of I = 1, 2, 3 and 4 × 1014 W
cm−2, respectively. But we also see that the 780 nm results
appear to begin merging with the static ionization results in
the high intensity limit, I > 14.0 × 1014 W cm−2.

The intensity I = 14.0 × 1014 W cm−2, which is
associated with a peak E-field of 0.2 au, is the threshold
intensity for the onset of above-barrier ionization (ABI)
according to Scrinzi et al [3]. ABI is an intense-field process
in which the electric field suppresses the Coulomb potential to
the extent that the electron (originally in the ground state) can
escape without tunnelling. ABI is also referred to as barrier-
suppression ionization (BSI). Several different methods have
been considered for estimating the onset of ABI [3, 5–8], with
estimates for helium generally in the 0.2 au–0.4 au range. In
our static-field results we identify two interesting transition
points: E = 0.175 au and E = 0.38 au. For field strengths
E < 0.38 au the helium atom responds adiabatically to electric
fields that are ramped on sufficiently gently. However, above

E = 0.38 au we have difficulty producing a clear adiabatic
response for any length of ramp-on. At E = 0.175 au,
the static-ionization rate curve �(E) undergoes a change in
a functional form, with the abrupt appearance of a rapidly
increasing component that scales as E4. In section 4, we
discuss the calculation of static-field ionization rates and
the adiabatic response of helium to slowly varying electric
fields.

2. Derivation of scaling laws

In [1], we showed that helium intense-field ionization rates
obey simple scaling laws in intensity and frequency. In [1],
the discussion was limited to optical wavelengths. The scaling
laws were inferred from a perturbative description of ionization
which successfully modelled ionization rates over an intensity
range that extended to an order of magnitude higher than the
usual lowest order perturbation theory with a static potential.
In this section, we review the findings of [1] in preparation for
the analysis of new data in section 3.

Figure 2 shows the 390 nm results along with the result
of a curve fit based on the classic perturbative power law IN .
We write this as

�(I) = A
(
d2

0 I
)N

. (1)

Here N, the exponent of I, is set to 8, the minimum number of
photons required to ionize. The ionization potential is assumed
to be static so that the exponent is a constant.

Next we introduce a ponderomotive-shifted ionization
potential [1] into the power law. We again restrict the
calculation to 390 nm, ω390 = 0.116 83 au. Intensity I will
always be written in units of 1014 W cm−2. With intensity
I in these units, the ponderomotive shift in au, Up(I, ω), is
(0.053 36)2I (4ω2)−1, where ω is in au. Setting ω = 0.116 83
au and writing Up in units of ω390 = 0.116 83 au, we get Up =
0.4464I = ξ0I . Henceforth, we add on to the ponderomotive
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Figure 2. Single-ionization rates of helium at 390 nm as a function of intensity. Rates obtained from numerical integration are compared
with those obtained using equations (1) and (2).
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Figure 3. Single-ionization rates of helium at 780 nm as a function of intensity.

shift a small second-order Stark shift (Stark = ξ2I = 0.0096I )
and write ξ = ξ0 + ξ2 = 0.456. (The value of the second-order
Stark shift is obtained from an analysis of intensity dependence
of the positions of the resonance peaks visible in figures 3–5.)
The ionization potential in units of the 390 nm photon is now
N0(I ) = (Ip + Up(I) + ξ2I )/0.11683 = n + ξI , where n =
7.735 and ξ = 0.456. Using these parameters, � takes the
form

�(I) = A
(
d2

0 I
)N0(I )

. (2)

Figure 2 shows the 390 nm rate data along with the results
of equations (1) and (2). The constants A = 548 000.0 and
d0 = 0.138 were chosen to fit equation (2) to non-resonant

features of the 390 nm data. The power law formula
works well over the range I = 0.5 to 9 × 1014 W cm−2,
an order of magnitude higher in intensity than the static-
potential perturbation theory of equation (1), evidence that
the ionization process is a multiphoton process rather than
tunnelling or ABI.

Suppose we now attempt to use the 390 nm results to
predict 780 nm ionization rates. In the weak-field limit,
twice as many photons are now required for ionization. As
a first step then, we would double the exponent of intensity:(
d2

0 I
)N0 becomes

((
d2

0 I
)N0

)R
where R is wavelength in units of

390 nm. In the 780 nm case R = 2. However this fails in the
intense field limit, because N0R underestimates the number
of photons required for ionization in the 780 nm case: the

3
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Figure 4. Single-ionization rates of helium at 390 nm as a function of intensity.
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Figure 5. Single-ionization rates of helium at 195 nm.

ponderomotive shift in the 780 case is four times that in the
390 nm case for any given intensity. As discussed in [1],
the solution is to use a scaled intensity, Ī = IR2. Changing
variables to Ī in equation (1) yields

�(Ī , R) =
[

A

R

(
d2

0 Ī
)N0(Ī )

]R

. (3)

If this new variable, Ī , is held constant, then equation (3)
describes ionization from a potential well whose depth remains
constant as the wavelength R is varied explicitly. Equation (3)
models the 780 nm data well [1], over the same intensity
range attained by equation (2) in figure 1, provided the scaled
intensity Ī is used, and provided A is divided by the scaled
wavelength R, as written in equation (3).

The A/R term of equation (3) was explored only briefly
in [1]. Although it is separate from the effective dipole d0,
its variation in R reflects the fact that the effective dipole
should not really be constant as R varies. As we show in
the following section, it can be regarded as a rather small
wavelength dependence in the atomic parameters, and in
figure 1 it manifests itself as the slight R dependence in
the slopes of the ionization curves. We consider it to be of
some importance though, since interpolation of the results at
values of R between R = 2 and R = 0.5 should be useful
to experimentalists. In the following section, we show that
using equation (3) (via A/R) to interpolate between R = 1
and R = 0.5 introduces some error, and a better method will
be discussed.
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3. Application of scaling laws at 195 nm, 390 nm and
780 nm

The perturbative power laws of the previous section clarify
the frequency scaling of �(I), but several features of the
rate curves that are clearly apparent in figure 1 are not as
apparent in the power law of equation (3). In particular, in
figure 1 the vertical displacements of the rate curves (above
the static results) scale as the square of the laser frequency
(ω2). Additionally, on the scale of figure 1 the curves are
nearly linear in their general trend. The ω2 displacement is of
particular interest since it distinguishes laser-driven ionization
from static-field ionization. Below, we derive a formula for
this ω2 displacement in terms of constants associated with the
ponderomotive shift and the second-order Stark shift (ξ ), as
well as d0, A, and wavelength.

We begin by writing �(I) in a functional form which
agrees with the power law formulations over a certain interval
(from Ī = 1 to about 8) and retains the scaling behaviour,
but makes explicit the two characteristics of the rate curves
described in the above paragraph. The new functional form
is useful in the high intensity limit and as we will see has
additional practical advantages. The functional form is

�(I) = exp

(
− 1√

b0 + b1I

)
, (4)

which is simply an expression of the observation that the (non-
static) data shown in figure 1 are linear in their general trend.
Since, over a certain interval of I, this curve fit coincides
to good approximation with the power law equation (3), we
immediately obtain b0 and b1 in terms of atom plus laser
parameters d0, A, n,R and ξ by exponentiating the natural
log of equation (3) and equating exponents in equations (3)
and (4):

b0R
2 + b1Ī � [

ln(A/R) + ln
(
d2

0 Ī
)
(n + ξ Ī )

]−2
. (5)

Choosing two values of Ī in equation (5) gives two linear
equations in b0 and b1. But since the agreement between
equations (3) and (4) is approximate, each different choice of
the intensity pair (Ī 1, Ī 2) will yield a somewhat different value
for the pair (b0, b1). For most choices of (Ī 1, Ī 2) however, (for
example with 1.0 � Ī < 4.0) the derived values of (b0, b1)

differ little from each other, varying by only a few per cent.
Setting (Ī 1, Ī 2) = (1, 2) gives the simplest expression for b0:

b0R
2 = 2

[
ln(A/R) +

(
ln

(
d2

0

)
(n + ξ)

]−2

− [
ln(A/R) + ln

(
2d2

0

)
(n + 2ξ)

]−2
. (6)

Using the atomic and laser parameters from the previous
section (A = 548 000, d0 = 0.138, n = 7.735, ξ = 0.456),

we can compare equation (6) with calculated results for λ =
780 nm, 390 nm and 195 nm (R = 2, 1 and 0.5, respectively).

In figures 3–5, we plot calculated ionization rates over an
intensity range 0.0 < Ī < 16.0, for R = 2 (780 nm) and
R = 1 (390 nm). At R = 0.5 (195 nm) Ī < 8.0, because
the data end at I = 32.0 × 1014 W cm−2 (recall Ī = IR2).
The ordinate in each of the figures is 1/ ln2(�(I)), so that the
straight lines appearing in the figures correspond directly to
the b0 + b1I term that appears in equation (4). The ordinate

intercept of the straight lines drawn in figures 3–5 is the value
of b0 predicted by the numerically integrated ionization rates.
The coefficient b0, then, is the quantity we originally set out
to derive in terms of atom plus laser parameters: the vertical
displacement of the ionization curves in figure 1. We find
below that b0 is, to very good approximation, linear in ω2, (or
1/R2, recalling that R is wavelength in units of 390 nm). The
values of b0 derived from figures 3–5 are as follows:

780 nm (R = 2.0) : b0 = 0.000 247,

390 nm (R = 1.0) : b0 = 0.000 990,

195 nm (R = 0.5) : b0 = 0.003 920.

The values of b0 derived from equation (6) are as follows:

780 nm (R = 2.0) : b0 = 0.000 250,

390 nm (R = 1.0) : b0 = 0.000 989,

195 nm (R = 0.5) : b0 = 0.003 856.

The good agreement suggests that equation (6) can be
regarded as qualitatively correct even outside the frequency
range used in its derivation (R = 1 to R = 2). As
an application, equation (6) may now be used to explore
sensitivity of a0 = b0R

2 to changes in the atom plus laser
parameters. Over a wider range of frequencies, values
a0 = b0R

2 given by equation (6) are as follows:

3120 nm (R = 8.0) : a0 = 0.000 993,

1560 nm (R = 4.0) : a0 = 0.001 000,

780 nm (R = 2.0) : a0 = 0.001 000,

390 nm (R = 1.0) : a0 = 0.000 989,

195 nm (R = 0.5) : a0 = 0.000 964.

Although a0 is insensitive to wavelength, it is sensitive to each
of the other parameters. For example, in the R = 1 case, one
may easily verify numerically that a0 is very nearly linear in
ξ . If ξ were half its actual value of 0.456 then a0 at R = 1
would be reduced by half to 0.000 51. At R = 2, a0 would
be reduced to 0.0006, and at R = 0.5 it would be reduced to
0.000 38. The vertical separation (on the scale of figure 1), then
gives us a measure of the derivative of the ponderomotive shift
(plus Stark shifts) with respect to intensity: ξ . The frequency
squared dependence of the actual separation, b0 = a0/R

2,
arises because the rate curves follow the familiar power law
of multiphoton ionization: the minimum number of photons
to ionize scales linearly with wavelength, so that R appears
in the exponent of the power law. ξ does not appear in the
theory of static-field ionization, and therefore sensitivity to ξ

distinguishes laser-driven ionization processes from static.
Equation (6) predicts a large change in a0 in response

to a small change in the scaled ionization potential n = Ip/

0.116 83. For example, n at 6.7832 (for neon) is about 13%
smaller than n for helium (7.735), but the resulting a0 is
0.001 39 at R = 2, a 39% increase. At the neon value of n,
the R dependence in a0 is again weak, hence an (approximate)
ω2 displacement of rate curves would again be observed, as in
figure 1.

We cannot regard equation (6) as quantitatively accurate,
because as we discuss below, wavelength dependence
introduced by the A/R term is found to be in error by about
10% at R = 0.5. Evidently, equation (6) works well over the
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Figure 6. Single-ionization rates (−1/ ln(E2 Rate(E))) of helium induced by static electric field E. Rates are in au.

range that it can be tested (R = 0.5–2) because it is insensitive
to the A/R term, R � 0.5.

We can learn more about the relation between A/R and
the straight-line parameters of equation (4) by repeating the
above exercise for the slope b1 rather than b0. First, the values
of b1 derived from figures 3–5 are as follows:

780 nm (R = 2.0) : b1 = 0.001 485,

390 nm (R = 1.0) : b1 = 0.001 630,

195 nm (R = 0.5) : b1 = 0.001 750.

The values of b1 derived from equation (5) using (Ī 1, Ī 2) =
(1, 3) are as follows:

780 nm (R = 2.0) : b1 = 0.001 470,

390 nm (R = 1.0) : b1 = 0.001 680,

195 nm (R = 0.5) : b1 = 0.001 930.

The pair (Ī 1, Ī 2) = (1, 3) minimizes error at R = 1 and 2, but
the 10% error at R = 0.5 stands out. In fact, all of the variation
in b1 observed as R varies from 0.5 to 2 is a result of the A/R

term (R appears nowhere else), so we know immediately that
the purpose of the A/R term in equation (3) is to model this
slight wavelength dependence in b1. From the above data, we
learn that it does not succeed at this with quantitative accuracy.
In [1], we added an additional R dependence to d0, which
worked well. In fact, on physical grounds we should expect
the effective dipole moment d0 to vary with R and perhaps
intensity also, as discussed in [1]. But this variation is not
understood well enough to provide guidance on interpolating
the above results to new values of R, especially in the 0.5–
1.0 range.

Turning to the problem of interpolating the above results
to new values of R, we must say, then, that this is an unsolved
problem. Purely on numerical grounds though, it appears
that equation (4) is best suited for this interpolation: the
numerically determined b1 is roughly constant, with a modest

correction that is, to first approximation, linear in ln(R).
The perturbative power law of equation (3), by contrast, was
originally formulated to provide theoretical guidance on the
dominant scaling parameters of the ionization process.

For completeness, we write the three curve fits to the three
straight (dashed) lines in figures 3–5. (Here a0 = b0R

2 and
a1 = b1.) We have

�(Ī , R) = exp

(
− R√

a0 + a1Ī

)
, (7)

where � is in au and I = Ī /R2 is in units of 1014 W cm−2. The
values of a0 and a1 derived from figures 3–5 are as follows:

780 nm (R = 2.0) : a0 = 0.000 9882, a1 = 0.001 485,

390 nm (R = 1.0) : a0 = 0.000 9900, a1 = 0.001 630,

195 nm (R = 0.5) : a0 = 0.000 9800, a1 = 0.001 750.

Here intensity is limited to Ī < 16 for 390 nm and 780 nm
(and Ī < 8 for 195 nm). Over higher intensity ranges, the
curves given in equation (5) of [1] may be used.

Finally, we call attention to an important feature of
figure 5 that has not yet been discussed. For sufficiently small
intensities, the straight line fit associated with the multiphoton
rate curves of figures 3–5 fails. It fails because as intensity
approaches zero, the result from the power law of equation (3)
approaches zero, whereas �(Ī ) of equation (7) does not. The
disagreement is difficult to see in figures 3 and 4 (780 nm
and 390 nm), but it is clear in figure 5 (195 nm). From
figure 5 we conclude that at 195 nm the failure of equation (7) is
unmistakable for I < 1.0 × 1014 W cm−2. Close examination
of the 390 nm data suggests that the corresponding threshold
at 390 nm is 0.25 × 1014 W cm−2.

4. Static-field ionization rates derived from
time-dependent quantum mechanics

In figure 1, we presented static-field ionization rates that
were averaged over the distribution of E-fields found in a

6
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Table 1. Static-field ionization rates from the ground state of helium as a function of peak electric field strength E.

� (au)
E (au) Present work Scrinzi et al [3] Themelis et al [4] ADK theory [9]

0.045 9.4463 ×10−15 1.75 ×10−14

0.048 9.0006 ×10−14 1.61 ×10−13

0.05 3.3536 ×10−13 6.10 ×10−13

0.055 6.7817 ×10−12 1.11 ×10−11

0.06 7.8936 ×10−11 1.23 ×10−10

0.067 1.4045 ×10−9 1.6 ×10−9 1.96 ×10−9

0.068 1.8365 ×10−9 2.0 ×10−9 2.78 ×10−9

0.07 3.6360 ×10−9 3.6 ×10−9 5.42 ×10−9

0.075 1.6945 ×10−8 1.42 ×10−8 2.45 ×10−8

0.08 6.2093 ×10−8 4.63 ×10−8 5.57 ×10−8 9.15 ×10−8

0.09 5.3387 ×10−7 5.09 ×10−7 5.23 ×10−7 8.20 ×10−7

0.095 1.3413 ×10−6 1.30 ×10−6 2.06 ×10−6

0.10 2.9391 ×10−6 2.88 ×10−6 2.92 ×10−6 4.71 ×10−6

0.11 1.1755 ×10−5 1.15 ×10−5 1.17 ×10−5 1.96 ×10−5

0.12 3.6829 ×10−5 3.62 ×10−5 3.66 ×10−5 6.42 ×10−5

0.13 9.5748 ×10−5 9.43 ×10−5 9.50 ×10−5 1.74 ×10−4

0.14 2.1495 ×10−4 2.12 ×10−4 2.13 ×10−4 4.09 ×10−4

0.15 4.2913 ×10−4 4.23 ×10−4 4.25 ×10−4 8.56 ×10−4

0.16 7.7875 ×10−4 7.68 ×10−4 7.70 ×10−4 1.63 ×10−3

0.18 2.0578 ×10−3 2.03 ×10−3 2.03 ×10−3 4.73 ×10−3

0.20 4.3347 ×10−3 4.31 ×10−3 4.30 ×10−3 1.07 ×10−2

0.225 9.0115 ×10−3 2.57 ×10−2

0.25 1.5793 ×10−2 1.57 ×10−2 1.56 ×10−2 5.02 ×10−2

0.30 3.5857 ×10−2 3.56 ×10−2 3.52 ×10−2 1.35 ×10−1

0.34 5.7545 ×10−2 5.72 ×10−2 2.40 ×10−1

0.3773 8.1210×10−2 3.65 ×10−1

0.40 9.77 ×10−2 9.64 ×10−2 4.53 ×10−1

sinusoidally oscillating field. In this section, we discuss static-
field rates without the cycle averaging and present an analytical
curve fit to the data.

In practice, the calculation of static-field ionization
rates using the time-dependent Schrödinger equation is little
different from the calculation of laser-driven ionization, which
is described in detail in [1]. The E-field is ramped on
smoothly to a peak value Emax using a sinusoidal profile:
E = Emax(1 − cos(�t))/2 for 0 < t < π/�. The integration
is a finite-difference scheme in radial variables with a basis
set of coupled spherical harmonics [2]. The integrations
were repeated with increasingly large values for the maximum
angular momenta Lmax and ramp-on times T, until no change
was observed in the final results. In the low E-field limit, the
maximum total angular momentum of the two-electron partial
waves was 12h̄. In the high E-field limit (E > 0.25 au), 24h̄
was used. The finite-difference grid introduces a detectable
source of error in the calculations. Initially, all calculations
were performed using a grid spacing δr of 0.29 au. Reducing
δr to 0.2 au altered ionization rates by 0.3% at E = 0.1 au and
by 0.03% at E = 0.3 au. Rates were obtained by measuring
the rate of decay of population within a sphere of 18 Bohr
radii about the atomic core. Perfect exponential decay was
observed in this quantity at every choice of Emax, provided the
ramp-on of the E-field was sufficiently gentle.

The time-dependent approach was successful because
an adiabatic response was observed for sufficiently slowly
varying ramp-on profiles. More precisely, for sufficiently large

ramp-on times, Ta = π/�a , all ramp-ons T > Ta produced
the same final ionization rate, and ionization adiabatically
followed the slowly varying E-field. Translating 2π/�a

into nanometres, we found 2π/�a at E = 0.05 au to be
4600 nm. At E > 0.08 au, we were able to use a shorter
ramp-on: 2π/�a = 1150 nm. At the highest field strengths,
E > 0.30 au, it was again necessary to lengthen the ramp-
on, using values of �a such that 2π/�a = 2200 nm. No
adiabatic response was observed for E > 0.38 au. In other
words each choice of ramp-on seemed to produce a different
atomic response and a different ionization rate. Despite this
source of uncertainty, at E = 0.40 au the measured ionization
rate differed from Scrinzi’s by only a few per cent.

Figure 6 shows the results of the helium static-field
ionization rate calculations. The rate values are plotted as
−1/ ln(E2Rate(E)). The resulting curve is linear on the scale
of figure 6 at E-field values below about 0.2 au. Above 0.25 au,
the onset of a new profile is clearly visible to the eye.

Based on these considerations, the calculated data can be
fit with a very simple function

�(E) = 1

E2
exp

(
− 1

1.47 × 10−5 + 0.577E

)
+ 6.183(E − 0.1755)4Step(E − 0.1755), (8)

where the function Step (x) = 1 for x > 0, and 0 otherwise.
Here E < 0.4 au. The E-field strength is in atomic units, as
is �(E). The numerical model (equation (8)) suggests that a
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useful functional form for representing the behaviour of �(E)

for E > 0.17 au is a term that scales as E4. However, the E4

model is based on only five data points. The Scrinzi data [3]
agree well with our data in the 0.2 < E < 0.4 limit, although
the Scrinzi data appear more consistent with an E2 model for
E � 0.4. The interesting feature of the E4 model is that it
commences abruptly at about E = 0.175 au. It is not well
represented by, for example, a fourth-order polynomial that
begins near E = 0.

To get an empirical formula for the cycle-averaged static
rates shown in figure 1, multiplying equation (8) by 0.146I 0.25

works well for I < 50.0 × 1014 W cm−2, (E < 0.3773).
(E in au is transformed into intensity in units of 1014 W cm−2

by I = 14.0484(E/0.2)2.)
In table 1, we present our static results along with

those of [3] and [4]. Both of the latter are based on full-
dimensional solutions of the time-independent Schrödinger
equation. The agreement between the full-dimensional
methods is generally good. Agreement between the three
highly dissimilar computational and theoretical methods does
much to improve confidence in the results and methods. The
classical ADK rate formula fails to model the ionization data
in any limit we have considered. The ADK formula used here
is discussed in [1]. Part of its failure arises from the fact that
the classical ADK approximation is derived for one-electron
atoms, not helium. The ADK approximation is the first term
of a series solution for static-field ionization and works rather
well under the restrictions assumed in its derivation: the weak
static-field ionization of hydrogenic atoms [4].

5. Discussion

Only in recent years has it become possible to treat with
quantitative rigour the response of helium (or any two-electron
atomic system) to intense light [10–18]. In this paper, we
presented calculations of helium single-ionization rates, �(I),
from the UV to the static-field limit. A full-dimensional
treatment of the helium-laser interaction was a requirement
for quantitative accuracy. Plotted together in figure 1 as
1/ln2(�(I)) against intensity I, the data revealed a number
of similarities and dissimilarities that could be explained in
terms of scaling laws derived from ponderomotive-shifted
perturbation theory.

We conclude by reviewing some of the more puzzling
features of ionization encountered in the above discussion. The
problem of estimating the onset of above-barrier ionization
and of quantifying the relative contributions of tunnelling
and ABI to a static ionization rate remains unsolved. ABI
is inherently a classical concept. It may be defined as the limit
in which an atom can ionize without tunnelling. Because it
is possible to formulate any number of plausible but highly
dissimilar classical models of ionization, estimates of the
intensity threshold of ABI vary by a factor of over 4 [3, 5–8].
The Scrinzi estimate of 14 × 1014 W cm−2 (E = 0.2 au) is in
the low range of published estimates.

Similarly, determining the exact contribution of tunnelling
to ionization is an important theoretical problem that remains
poorly understood. Let us consider the problem at 780 nm.

Tunnelling is a static-field process. Its magnitude is therefore
bounded by the static-field rates shown in figure 1. It is clear
then that tunnelling does not contribute significantly to laser-
driven ionization (780 nm) for I < 4 × 1014 W cm−2. The
static-field rates are too small by anything from a factor of 1000
in the low intensity range to a factor of 2 at 4 × 1014 W cm−2.
For intensities greater than 14×1014 W cm−2 it is increasingly
likely that ABI dominates, although this limit is also poorly
understood quantitatively. Tunnelling is too small to fully
explain the 780 nm rates for 4 × 1014 W cm−2 < I < 14 ×
1014 W cm−2. In this range, we find that the ionization peaks
associated with resonance that occur in the high-intensity limit
differ little from corresponding resonant ionization features in
the low-intensity limit (seen most clearly in figure 3). In
both the low end and the high end, resonant behaviour is the
signature of multiphoton ionization, and no static process can
model the resonant rates. On the other hand, in the range
4 × 1014 W cm−2 < I < 14 × 1014 W cm−2 the static rates
are a significant percentage of the non-resonant 780 nm rates.
In fact, the static rates may be up to 80% of the non-resonant
780 nm rates in the high end of this intensity range. We do not
believe that there is currently any reliable method of estimating
the relative contributions of tunnelling, ABI and multiphoton
ionization in this limit.
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