430 research outputs found

    Synthesis, characterisation and Pickering emulsifier performance of poly(stearyl methacrylate)–poly(N-2-(methacryloyloxy)ethyl pyrrolidone) diblock copolymer nano-objects via RAFT dispersion polymerisation in n-dodecane

    Get PDF
    A near-monodisperse poly(stearyl methacrylate) macromolecular chain transfer agent (PSMA macro-CTA) was prepared via reversible addition–fragmentation chain transfer (RAFT) solution polymerisation in toluene. This PSMA macro-CTA was then utilised as a stabiliser block for the RAFT dispersion polymerisation of a highly polar monomer, N-2-(methacryloyloxy)ethyl pyrrolidone (NMEP), in n-dodecane at 90 °C. 1H NMR studies confirmed that the rate of NMEP polymerisation was significantly faster than that of a non-polar monomer (benzyl methacrylate, BzMA) under the same conditions. For example, when targeting a PSMA14–PNMEP100 diblock copolymer, more than 99% NMEP conversion was achieved within 30 min, whereas only 19% BzMA conversion was obtained on the same time scale for the corresponding PSMA14–PBzMA100 synthesis. The resulting PSMA–PNMEP diblock copolymer chains underwent polymerisation-induced self-assembly (PISA) during growth of the insoluble PNMEP block to form either spherical micelles, highly anisotropic worms or polydisperse vesicles, depending on the target DP of the PNMEP chains. Systematic variation of this latter parameter, along with the solids content, allowed the construction of a phase diagram which enabled pure morphologies to be reproducibly targeted. Syntheses conducted at 10% w/w solids led to the formation of kinetically-trapped spheres. A monotonic increase in particle diameter with PNMEP DP was observed for such PISA syntheses, with particle diameters of up to 462 nm being obtained for PSMA14–PNMEP960. Increasing the copolymer concentration to 15% w/w solids led to worm-like micelles, while vesicles were obtained at 27.5% w/w solids. High (≥95%) NMEP conversions were achieved in all cases and 3[thin space (1/6-em)]:[thin space (1/6-em)]1 chloroform/methanol GPC analysis indicated relatively high blocking efficiencies. However, relatively broad molecular weight distributions (Mw/Mn > 1.50) were observed when targeting PNMEP DPs greater than 150. This indicates light branching caused by the presence of a low level of dimethacrylate impurity. Finally, PSMA14–PNMEP49 spheres were evaluated as Pickering emulsifiers. Unexpectedly, it was found that either water-in-oil or oil-in-water Pickering emulsions could be obtained depending on the shear rate employed for homogenisation. Further investigation suggested that high shear rates lead to in situ inversion of the initial hydrophobic PSMA14–PNMEP49 spheres to form hydrophilic PNMEP49–PSMA14 spheres

    Block Copolymer Nanoparticles Prepared via Polymerization-Induced Self-Assembly Provide Excellent Boundary Lubrication Performance for Next-Generation Ultralow-Viscosity Automotive Engine Oils

    Get PDF
    Core cross-linked poly(stearyl methacrylate)–poly(benzyl methacrylate)–poly(ethylene glycol dimethacrylate) [S31–B200–E20] triblock copolymer nanoparticles were synthesized directly in an industrial mineral oil via polymerization-induced self-assembly (PISA). Gel permeation chromatography analysis of the S31–B200 diblock copolymer precursor chains indicated a well-controlled reversible addition–fragmentation chain transfer dispersion polymerization, while transmission electron microscopy, dynamic light-scattering (DLS), and small-angle X-ray scattering studies indicated the formation of well-defined spheres. Moreover, DLS studies performed in THF, which is a common solvent for the S and B blocks, confirmed successful covalent stabilization because well-defined solvent-swollen spheres were obtained under such conditions. Tribology experiments using a mini-traction machine (MTM) indicated that 0.50% w/w dispersions of S31–B200–E20 spheres dramatically reduce the friction coefficient of base oil within the boundary lubrication regime. Given their efficient and straightforward PISA synthesis at high solids, such nanoparticles offer new opportunities for the formulation of next-generation ultralow-viscosity automotive engine oils

    Incorporation of additives in single crystals – bio-inspired approach

    Get PDF

    Lubrication at physiological pressures by polyzwitterionic brushes

    Get PDF
    The very low sliding friction at natural synovial joints, which have friction coefficients of mu < 0.002 at pressures up to 5 megapascals or more, has to date not been attained in any human-made joints or between model surfaces in aqueous environments. We found that surfaces in water bearing polyzwitterionic brushes that were polymerized directly from the surface can have m values as low as 0.0004 at pressures as high as 7.5 megapascals. This extreme lubrication is attributed primarily to the strong hydration of the phosphorylcholine-like monomers that make up the robustly attached brushes, and may have relevance to a wide range of human-made aqueous lubrication situations

    Progressive genetic aberrations detected by comparative genomic hybridization in squamous cell cervical cancer

    Get PDF
    Genetic changes orchestrated by human papillomaviruses are the most important known factors in carcinogenesis of the uterine cervix. However, it is clear that additional genetic events are necessary for tumour progression. We have used comparative genomic hybridization to document non-random chromosomal gains and losses within a subset of 37 cervical carcinomas matched for clinical stage Ib, but with different lymph node status. There were significantly more chromosomal changes in the primary tumours when the lymph nodes were positive for metastases. The most frequent copy number alterations were loss of 3p, 11q, 6q and 10q and gain of 3q. The smallest areas of loss and gain on chromosome 3 were 3p14–22 and 3q24–26. The study identifies progressive DNA copy number changes associated with early-stage invasive cervical cancers with and without lymph node metastases, a factor of potential prognostic and therapeutic value. © 2000 Cancer Research Campaign http://www.bjcancer.co

    High pressure conductivity and morphology of conducting polymer colloids

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29333/1/0000400.pd

    Genetic aberrations detected by comparative genomic hybridisation in vulvar cancers

    Get PDF
    Squamous cell carcinoma of the vulva is a disease of significant clinical importance, which arises in the presence or absence of human papillomavirus. We used comparative genomic hybridisation to document non-random chromosomal gains and losses within human papillomavirus positive and negative vulvar cancers. Gain of 3q was significantly more common in human papillomavirus-positive cancers compared to human papillomavirus-negative cancers. The smallest area of gain was 3q22–25, a chromosome region which is frequently gained in other human papillomavirus-related cancers. Chromosome 8q was more commonly gained in human papillomavirus-negative compared to human papillomavirus-positive cancers. 8q21 was the smallest region of gain, which has been identified in other, non-human papillomavirus-related cancers. Chromosome arms 3p and 11q were lost in both categories of vulvar cancer. This study has demonstrated chromosome locations important in the development of vulvar squamous cell carcinoma. Additionally, taken together with previous studies of human papillomavirus-positive cancers of other anogenital sites, the data indicate that one or more oncogenes important in the development and progression of human papillomavirus-induced carcinomas are located on 3q. The different genetic changes seen in human papillomavirus-positive and negative vulvar squamous cell carcinomas support the clinicopathological data indicating that these are different cancer types

    ABC Triblock Copolymer Worms: Synthesis, Characterization, and Evaluation as Pickering Emulsifiers for Millimeter-Sized Droplets

    Get PDF
    Polymerization-induced self-assembly (PISA) is used to prepare linear poly(glycerol monomethacrylate)–poly(2-hydroxypropyl methacrylate)–poly(benzyl methacrylate) [PGMA–PHPMA–PBzMA] triblock copolymer nano-objects in the form of a concentrated aqueous dispersion via a three-step synthesis based on reversible addition–fragmentation chain transfer (RAFT) polymerization. First, GMA is polymerized via RAFT solution polymerization in ethanol, then HPMA is polymerized via RAFT aqueous solution polymerization, and finally BzMA is polymerized via “seeded” RAFT aqueous emulsion polymerization. For certain block compositions, highly anisotropic worm-like particles are obtained, which are characterized by small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The design rules for accessing higher order morphologies (i.e., worms or vesicles) are briefly explored. Surprisingly, vesicular morphologies cannot be accessed by targeting longer PBzMA blocks—instead, only spherical nanoparticles are formed. SAXS is used to rationalize these counterintuitive observations, which are best explained by considering subtle changes in the relative enthalpic incompatibilities between the three blocks during the growth of the PBzMA block. Finally, the PGMA–PHPMA–PBzMA worms are evaluated as Pickering emulsifiers for the stabilization of oil-in-water emulsions. Millimeter-sized oil droplets can be obtained using low-shear homogenization (hand-shaking) in the presence of 20 vol % n-dodecane. In contrast, control experiments performed using PGMA–PHPMA diblock copolymer worms indicate that these more delicate nanostructures do not survive even these mild conditions

    Adsorption of Small Cationic Nanoparticles onto Large Anionic Particles from Aqueous Solution: A Model System for Understanding Pigment Dispersion and the Problem of Effective Particle Density

    Get PDF
    The present study focuses on the use of copolymer nanoparticles as a dispersant for a model pigment (silica). Reversible addition-fragmentation chain transfer (RAFT) alcoholic dispersion polymerization was used to synthesize sterically stabilized diblock copolymer nanoparticles. The steric stabilizer block was poly(2-(dimethylamino)ethyl methacrylate) (PDMA) and the core-forming block was poly(benzyl methacrylate) (PBzMA). The mean degrees of polymerization for the PDMA and PBzMA blocks were 71 and 100, respectively. Transmission electron microscopy (TEM) studies confirmed a near-monodisperse spherical morphology, while dynamic light scattering (DLS) studies indicated an intensity-average diameter of 30 nm. Small-angle X-ray scattering (SAXS) reported a volume-average diameter of 29 ± 0.5 nm and a mean aggregation number of 154. Aqueous electrophoresis measurements confirmed that these PDMA71-PBzMA100 nanoparticles acquired cationic character when transferred from ethanol to water as a result of protonation of the weakly basic PDMA chains. Electrostatic adsorption of these nanoparticles from aqueous solution onto 470 nm silica particles led to either flocculation at submonolayer coverage or steric stabilization at or above monolayer coverage, as judged by DLS. This technique indicated that saturation coverage was achieved on addition of approximately 465 copolymer nanoparticles per silica particle, which corresponds to a fractional surface coverage of around 0.42. These adsorption data were corroborated using thermogravimetry, UV spectroscopy and X-ray photoelectron spectroscopy. TEM studies indicated that the cationic nanoparticles remained intact on the silica surface after electrostatic adsorption, while aqueous electrophoresis confirmed that surface charge reversal occurred below pH 7. The relatively thick layer of adsorbed nanoparticles led to a significant reduction in the effective particle density of the silica particles from 1.99 g cm(-3) to approximately 1.74 g cm(-3), as judged by disk centrifuge photosedimentometry (DCP). Combining the DCP and SAXS data suggests that essentially no deformation of the PBzMA cores occurs during nanoparticle adsorption onto the silica particles

    LRP-1-mediated intracellular antibody delivery to the Central Nervous System

    Get PDF
    The blood-brain barrier (BBB) is by far the most important target in developing new approaches to improve delivery of drugs and diagnostic tools into the Central Nervous System (CNS). Here we report the engineering of pH-sensitive polymersomes (synthetic vesicles formed by amphiphilic copolymers) that exploit endogenous transport mechanisms to traverse the BBB, enabling delivery of large macromolecules into both the CNS parenchyma and CNS cells. We achieve this by targeting the Low Density Lipoprotein Receptor-Related Protein 1 (LRP-1) receptor. We show that LRP-1 is associated with endothelial transcytosis that does not involve acidification of cargo in membrane-trafficking organelles. By contrast, this receptor is also associated with traditional endocytosis in CNS cells, thus aiding the delivery of relevant cargo within their cytosol. We prove this using IgG as a model cargo, thus demonstrating that the combination of appropriate targeting combined with pH-sensitive polymersomes enables the efficient delivery of macromolecules into CNS cells.</p
    corecore