58 research outputs found

    ZnO-based scintillating bolometers: New prospects to study double beta decay of 64^{64}Zn

    Full text link
    The first detailed study on the performance of a ZnO-based cryogenic scintillating bolometer as a detector to search for rare processes in zinc isotopes was performed. A 7.2 g ZnO low-temperature detector, containing more than 80\% of zinc in its mass, exhibits good energy resolution of baseline noise 1.0--2.7 keV FWHM at various working temperatures resulting in a low-energy threshold for the experiment, 2.0--6.0 keV. The light yield for β\beta/γ\gamma events was measured as 1.5(3) keV/MeV, while it varies for α\alpha particles in the range of 0.2--3.0 keV/MeV. The detector demonstrate an effective identification of the β\beta/γ\gamma events from α\alpha events using time-properties of only heat signals. %(namely, Rise time parameter). The radiopurity of the ZnO crystal was evaluated using the Inductively Coupled Plasma Mass Spectrometry, an ultra-low-background High Purity Ge γ\gamma-spectrometer, and bolometric measurements. Only limits were set at the level of O\mathcal{O}(1--100) mBq/kg on activities of \Nuc{K}{40}, \Nuc{Cs}{137} and daughter nuclides from the U/Th natural decay chains. The total internal α\alpha-activity was calculated to be 22(2) mBq/kg, with a major contribution caused by 6(1) mBq/kg of \Nuc{Th}{232} and 12(2) mBq/kg of \Nuc{U}{234}. Limits on double beta decay (DBD) processes in \Nuc{Zn}{64} and \Nuc{Zn}{70} isotopes were set on the level of O(1017\mathcal{O}(10^{17}--1018)10^{18}) yr for various decay modes profiting from 271 h of acquired background data in the above-ground lab. This study shows a good potential for ZnO-based scintillating bolometers to search for DBD processes of Zn isotopes, especially in \Nuc{Zn}{64}, with the most prominent spectral features at \sim10--20 keV, like the two neutrino double electron capture. A 10 kg-scale experiment can reach the experimental sensitivity at the level of O(1024)\mathcal{O}(10^{24}) yr.Comment: Prepared for submission to JINST; 27 pages, 9 figures, and 7 table

    Twelve-crystal prototype of Li2_2MoO4_4 scintillating bolometers for CUPID and CROSS experiments

    Full text link
    An array of twelve 0.28 kg lithium molybdate (LMO) low-temperature bolometers equipped with 16 bolometric Ge light detectors, aiming at optimization of detector structure for CROSS and CUPID double-beta decay experiments, was constructed and tested in a low-background pulse-tube-based cryostat at the Canfranc underground laboratory in Spain. Performance of the scintillating bolometers was studied depending on the size of phonon NTD-Ge sensors glued to both LMO and Ge absorbers, shape of the Ge light detectors (circular vs. square, from two suppliers), in different light collection conditions (with and without reflector, with aluminum coated LMO crystal surface). The scintillating bolometer array was operated over 8 months in the low-background conditions that allowed to probe a very low, μ\muBq/kg, level of the LMO crystals radioactive contamination by 228^{228}Th and 226^{226}Ra.Comment: Prepared for submission to JINST; 23 pages, 9 figures, and 4 table

    A first test of CUPID prototypal light detectors with NTD-Ge sensors in a pulse-tube cryostat

    Get PDF
    CUPID is a next-generation bolometric experiment aiming at searching for neutrinoless double-beta decay with ~250 kg of isotopic mass of 100^{100}Mo. It will operate at \sim10 mK in a cryostat currently hosting a similar-scale bolometric array for the CUORE experiment at the Gran Sasso National Laboratory (Italy). CUPID will be based on large-volume scintillating bolometers consisting of 100^{100}Mo-enriched Li2_2MoO4_4 crystals, facing thin Ge-wafer-based bolometric light detectors. In the CUPID design, the detector structure is novel and needs to be validated. In particular, the CUORE cryostat presents a high level of mechanical vibrations due to the use of pulse tubes and the effect of vibrations on the detector performance must be investigated. In this paper we report the first test of the CUPID-design bolometric light detectors with NTD-Ge sensors in a dilution refrigerator equipped with a pulse tube in an above-ground lab. Light detectors are characterized in terms of sensitivity, energy resolution, pulse time constants, and noise power spectrum. Despite the challenging noisy environment due to pulse-tube-induced vibrations, we demonstrate that all the four tested light detectors comply with the CUPID goal in terms of intrinsic energy resolution of 100 eV RMS baseline noise. Indeed, we have measured 70--90 eV RMS for the four devices, which show an excellent reproducibility. We have also obtained outstanding energy resolutions at the 356 keV line from a 133^{133}Ba source with one light detector achieving 0.71(5) keV FWHM, which is -- to our knowledge -- the best ever obtained when compared to γ\gamma detectors of any technology in this energy range.Comment: Prepared for submission to JINST; 16 pages, 7 figures, and 1 tabl

    A CUPID Li2100MoO4scintillating bolometer tested in the CROSS underground facility

    Get PDF
    A scintillating bolometer based on a large cubic Li2100MoO4 crystal (45 mm side) and a Ge wafer (scintillation detector) has been operated in the CROSS cryogenic facility at the Canfranc underground laboratory in Spain. The dual-readout detector is a prototype of the technology that will be used in the next-generation 0¿2ß experiment CUPID . The measurements were performed at 18 and 12 mK temperature in a pulse tube dilution refrigerator. This setup utilizes the same technology as the CUORE cryostat that will host CUPID and so represents an accurate estimation of the expected performance. The Li2100MoO4 bolometer shows a high energy resolution of 6 keV FWHM at the 2615 keV ¿ line. The detection of scintillation light for each event triggered by the Li2100MoO4 bolometer allowed for a full separation (~8s) between ¿(ß) and a events above 2 MeV . The Li2100MoO4 crystal also shows a high internal radiopurity with 228Th and 226Ra activities of less than 3 and 8 µBq/kg, respectively. Taking also into account the advantage of a more compact and massive detector array, which can be made of cubic-shaped crystals (compared to the cylindrical ones), this test demonstrates the great potential of cubic Li2100MoO4 scintillating bolometers for high-sensitivity searches for the 100Mo 0¿2ß decay in CROSS and CUPID projects

    New results about the revolutionary bolometer assembly of BINGO

    No full text
    International audienceSearching for neutrinoless double-beta decay (0ν\nu2β\beta) is one of the main experimental challenges of modern physics. One experimental technique is given by cryogenic detectors named bolometers that are really promising for this purpose. The current generation tonne-scale experiment CUORE using this technology is putting the best limit on 130^{130}Te 0ν\nu2β\beta half-life with TeO2_2 crystals but its sensitivity is limited by its background. Therefore, it will be followed by the next generation experiment CUPID (CUORE Upgrade with Particle IDentification) that will study 100^{100}Mo embedded inside Li2_2MoO4_4 crystals in order to reduce the γ\gamma background. It will also read the scintillation light produced by Li2_2MoO4_4 by adding another Ge bolometer acting as a light detector next to the main absorber to reject the α\alpha background. Thanks to that, CUPID will reach a sensitivity 2 orders of magnitude higher than CUORE. However, in the case where this is not enough to detect 0ν\nu2β\beta, BINGO (Bi-Isotope Next Generation 0ν\nu2β\beta Observatory) is preparing the next-next generation of bolometric experiments. To improve the 0ν\nu2β\beta discovery sensitivity, the goal is to reduce drastically the number of background events in the region of interest and to combine the use of the two previously cited isotopes: 130^{130}Te and 100^{100}Mo. To achieve this goal, BINGO is proposing to implement an active cryogenic veto to suppress the external γ\gamma background, to use Neganov-Trofimov-Luke effect to increase light detector sensitivity and to use a revolutionary detector assembly to reduce the total surface radioactivity contribution. In this article, we will focus on the latter and present the latest results obtained with two 45×\times45×\times45 mm3^{3} Li2_2MoO4_4 crystals
    corecore