
Journal of Instrumentation
     

PAPER • OPEN ACCESS

A first test of CUPID prototypal light detectors with
NTD-Ge sensors in a pulse-tube cryostat
To cite this article: K. Alfonso et al 2023 JINST 18 P06033

 

View the article online for updates and enhancements.

You may also like
Fast b-tagging at the high-level trigger of
the ATLAS experiment in LHC Run 3
G. Aad, B. Abbott, K. Abeling et al.

-

Optimization of a single module of CUPID
Alberto Ressa, On behalf of the CUPID
collaboration, A. Armatol et al.

-

The ATLAS Fast TracKer system
The ATLAS collaboration, G. Aad, B.
Abbott et al.

-

This content was downloaded from IP address 155.210.57.33 on 14/02/2024 at 13:31

https://doi.org/10.1088/1748-0221/18/06/P06033
/article/10.1088/1748-0221/18/11/P11006
/article/10.1088/1748-0221/18/11/P11006
/article/10.1088/1748-0221/18/11/P11006
/article/10.1088/1748-0221/18/11/P11006
/article/10.1088/1742-6596/2156/1/012228
/article/10.1088/1748-0221/16/07/P07006
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjss4YJslGCy8PHn7QABgewTYdMkGJtTvnptcFRVNiEF8G1c6AYqxvaX36IbUc1wFuIv_yoPkYeuZNOLu0NCuO0CpLP_o0YHECLbTP-ACtJgMiiL_2mqGVFDZIvQdTQIzelLbzsJmr1SbGf0y0n7lDQEkLvlVgYxPteR0Ih1MmqeyRCwPqJuMQg9z8XFyn77tU3X8nBexQIgsP-1pz7ax7rwsh9Ok_EQhi6QO7epDCv0L8AX5NOoLkMOaDadOy2M2RFRCFr9WhRioS9h4O0hpOVUmKZcmGx6S046iMS2eRJ2bbm6a6PSXpFRnUXXX6Yv_e7Dj-CbB0PnOKQ&sig=Cg0ArKJSzC9O-lYGp-wF&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://ecs.confex.com/ecs/prime2024/cfp.cgi%3Futm_source%3DIOP%26utm_medium%3Dbanner%26utm_campaign%3Dprime_abstract_submission


2
0
2
3
 
J
I
N
S
T
 
1
8
 
P
0
6
0
3
3

Published by IOP Publishing for Sissa Medialab

Received: April 11, 2023
Revised: May 26, 2023

Accepted: May 29, 2023
Published: June 29, 2023

A first test of CUPID prototypal light detectors with
NTD-Ge sensors in a pulse-tube cryostat

CUPID collaboration

E-mail: cupid.publications@lngs.infn.it

Abstract: CUPID is a next-generation bolometric experiment aiming at searching for neutrinoless
double-beta decay with ∼ 250 kg of isotopic mass of 100Mo. It will operate at ∼ 10 mK in a cryostat
currently hosting a similar-scale bolometric array for the CUORE experiment at the Gran Sasso
National Laboratory (Italy). CUPID will be based on large-volume scintillating bolometers consisting
of 100Mo-enriched Li2MoO4 crystals, facing thin Ge-wafer-based bolometric light detectors. In
the CUPID design, the detector structure is novel and needs to be validated. In particular, the
CUORE cryostat presents a high level of mechanical vibrations due to the use of pulse tubes and
the effect of vibrations on the detector performance must be investigated. In this paper we report
the first test of the CUPID-design bolometric light detectors with NTD-Ge sensors in a dilution
refrigerator equipped with a pulse tube in an above-ground lab. Light detectors are characterized in
terms of sensitivity, energy resolution, pulse time constants, and noise power spectrum. Despite the
challenging noisy environment due to pulse-tube-induced vibrations, we demonstrate that all the
four tested light detectors comply with the CUPID goal in terms of intrinsic energy resolution of
100 eV RMS baseline noise. Indeed, we have measured 70–90 eV RMS for the four devices, which
show an excellent reproducibility. We have also obtained high energy resolutions at the 356 keV line
from a 133Ba source, as good as Ge semiconductor 𝛾 detectors in this energy range.
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1 Introduction

Neutrinoless double-beta decay (0𝜈2𝛽) is a hypothetical nuclear process energetically allowed for a
tens of even-even nuclei [1], that can occur beside the rare but Standard-Model-allowed two-neutrino
double-beta decay (2𝜈2𝛽) [2]. While in the latter two electrons and two anti-neutrinos are produced,
the former implies the emission of two electrons only. The 2𝜈2𝛽 process has been observed in
several isotopes with the half-lives ranging between 1019–1024 yr [3–6]. On the other hand, a
possible existence of 0𝜈2𝛽, proposed by W.H. Furry in 1939 [7] and never detected, is still under
probe by many experiments; the most stringent half-life limits are at the level of 1024–1026 yr [8–15].
Its observation would establish that neutrinos are Majorana particles (i.e., they are their own
antiparticles) [16]. In addition, its existence would require an extension of the Standard Model to
include lepton number violation [17–27].

Experiments searching for 0𝜈2𝛽 are looking for a peak at the 𝑄-value (𝑄𝛽𝛽) of the transition,
corresponding to the sum of the kinetic energies carried by the two emitted electrons. There are 35
nuclei that can energetically undergo double-beta decay [1], however not all of them are viable for
experimental probing [20, 24, 28–31]. If an appropriate detector technology is available, the most
favourable isotopes to study are those with a 𝑄𝛽𝛽 above the natural 𝛾 radioactivity, that breaks off at
the 2615 keV line of 208Tl, with the exception of rare emissions with negligible branching ratio. This
implies less background in the region of interest (ROI) and a higher decay probability, since the
phase-space of the process increases sharply with 𝑄𝛽𝛽.

The decay can be investigated with low-temperature calorimeters, designated also as bolometers,
which embed the double-beta decay isotope under study and detect particle interactions via a small
temperature rise read out by a dedicated thermometer [31–37]. Bolometers are among the most
promising methods to search for 0𝜈2𝛽 thanks to their excellent energy resolution and high detection
efficiency. They can be made from a wide choice of absorber materials having a high internal
radiopurity. In addition, bolometers can be scaled up to large detector mass through arrays, as

– 1 –



2
0
2
3
 
J
I
N
S
T
 
1
8
 
P
0
6
0
3
3

demonstrated by CUORE, which is the first tonne-scale bolometric experiment and has been taking
data at the Gran Sasso National Laboratory in Italy since 2017 [38–40]. CUORE searches for the
0𝜈2𝛽 decay of 130Te (𝑄𝛽𝛽 = 2528 keV) that is contained in natTeO2 crystals.

The sensitivity of CUORE is limited by the 𝛼 background — responsible for a background
index of ∼ 10−2 counts/(keV· kg·yr) in the ROI — from radioactive surface contamination of
the surrounding materials [41, 42]. CUPID (CUORE Upgrade with Particle IDentification) is the
proposed successor of CUORE with a technique to reduce the background contribution from 𝛼 surface
contamination [43, 44]. It will be based on scintillating bolometers using Li2MoO4 crystals [45–47]
as a sensitive material, embedding the double-beta decay isotope 100Mo and coupled to cryogenic
Ge light detectors (LDs) [43] that work as bolometers as well. Bolometric LDs are known for good
energy resolution and low threshold, and are easier to operate than conventional ones in a millikelvin
environment. Scintillating bolometers exploit the fact that 𝛼 and 𝛽/𝛾 have different scintillation
light yields, making an efficient rejection of the dominant 𝛼 background [36, 48]. The isotope 100Mo
fulfills the major requirement of having a high 𝑄𝛽𝛽 above 2615 keV (at 3034 keV). A technology of
100Mo-enriched Li2MoO4 scintillating bolometers was developed in the LUMINEU project, showing
a high energy resolution in the ROI (∼5 keV FWHM), high internal radiopurity, and sufficient light
yield to reject 𝛼 particles [49–51]. The two demonstrators of CUPID — CUPID-0 [12, 52, 53] and
CUPID-Mo [13, 54, 55], based on the scintillators Zn82Se and Li100

2 MoO4 respectively — have
successfully validated the dual heat-light readout technology that will be adopted in CUPID. In
contrast to the demonstrators, which use cylindrical crystals and circular-shape LDs, CUPID will
operate cubic Li2MoO4 crystals [56–59], requiring the LD shape to be adapted to the crystal face to
increase scintillation photons collection efficiency [57, 59].

The CUPID detector configuration proposes a novel mechanical structure to hold the crystals and
couple them to the LDs [58]. In this work we will describe how the LDs were assembled and present
results on their performance in a dilution refrigerator with pulse-tube cooling (as foreseen in CUPID).

2 Assembly and bolometric test

The assembly procedure of CUPID [58] has been simplified compared to CUORE [60, 61] and to
the demonstrators CUPID-0 [52] and CUPID-Mo [54]. A CUPID tower will consist of 14 stacked
modules. Each module will comprise a copper frame hosting two LDs and two cubic Li2MoO4

crystals 45 mm side each. The innovation consists in the fact that crystals are not firmly clamped by
polytetrafluoroethylene (PTFE) elements but, during the assembly, they just rest by gravity on four
PTFE pieces, which are in turn secured on the copper frame and surrounding the LD Ge wafers. The
copper frame and the LDs constitute an independent element, that is shown in figure 1, left panel. The
tower is formed by just piling alternatively the copper frames (with their LDs) and the crystals. At the
end, a vertical copper skeleton frame is fixed between lowest and top frames to keep the floors together.
The crystals do not exert any pressure on the LD Ge wafers, as the latter are protected by the four PTFE
elements. A pressure on the top of the tower can be applied by a copper screw (a part of the skeleton
frame) on a copper plate placed at the top in order to stabilize the tower. This simplified structure has
some advantages: a) less time and effort to assemble; b) simplification in the production of copper
materials; c) absence of screws and threads, which implies easier surface cleaning and no risk for stuck
screws during the assembly; d) less passive materials; e) self-adjustment of the tower under thermal
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Figure 1. Left: four Ge LDs assembled following the CUPID baseline tower design (a rendering of a single
module can be found in [58]). Each LD is resting directly on the Cu holder (1) and surrounded by four PTFE
pieces (2). Two additional PTFE pieces (3) are also used to gently clamp them. An NTD Ge thermistor and a
heater are glued on each LD. Right: an array of four LDs ready to be installed in a pulse-tube cryostat.

contractions during the cooling down. The design is also characterized by having an open structure,
i.e., the crystals’ surfaces will be facing each other with no material in between, as implemented in
CUORE [62]. This is particularly important to perform coincidence analysis for background mitiga-
tion, so that events in which particles share their energy between two nearby crystals can be rejected.

Figure 1 (left) shows the assembled LDs used for this work. They are based on octagonal-shape
500 μm-thick high-purity Ge wafers (resistivity higher than 50Ω·cm at room temperature), resting
on a copper holder and kept between four PTFE pieces and locked using two PTFE rotating pieces.
The wafers were coated with an anti-reflecting SiO layer [63] with a thickness of 60 nm using two
methods: evaporation (performed in ĲCLab, Orsay, France) and sputtering (performed in Argonne
National Laboratory, US). Two of each kind were chosen for the test. The purpose of the SiO coating
is to increase the light absorption by the LDs [63]; it has been already validated in CUPID-0 [52] and
CUPID-Mo [54]. Each wafer carries a neutron-transmutation-doped Ge thermistor [64] (designated
simply as NTD in the following) with a size of 3 × 0.5 × 1 mm3 and a heater consisting of a P-doped
Si chip [65]. The NTD collects the phonons produced in the absorber after energy deposition and
converts them into an electrical signal. The heater is typically exploited to correct for the thermal
gain drift of the bolometer by delivering a constant amount of energy by Joule effect periodically [66],
but it was not used in the present work. Both chips are glued on the wafer by means of an epoxy
glue (Araldite® Rapid). The tested modules had Kapton® foil with gold contacts used to wire-bond
the NTD and heater for the electrical readout.

This design provides a different thermal and mechanical configuration of securing the Ge wafers
compared to the ways adopted in CUPID-0 and CUPID-Mo. In fact, the wafers are in direct contact
with the copper frame, that is at base temperature, and are less firmly fixed. This could affect the
bolometric performance, due to a stronger thermal coupling to the bath with respect to the previous
experiments, and induce some vibrational noise.

This work is a test of the bolometric performance of the LDs in the new holder. There was no
crystal scintillator facing the Ge wafer to evaluate the light yield registered in the LDs. The focus will
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be on characterizing these devices by looking at the baseline resolution and the time characteristics of
the thermal pulses, which is essential for pile-up rejection capability [67–70]. In fact, different holder
designs can lead to different noise power spectrum, and the time characteristics (the rise-time and the
decay-time) are connected to the thermal coupling of the LD with the holder. These LDs — when tested
together with Li2MoO4 scintillating crystals in the Gran Sasso laboratory — showed a light collection
efficiency of around 0.33 keV/MeV for 𝛾(𝛽) radiation [58]. This means that when 𝛽 or 𝛾 releases
1 MeV in the scintillating crystal the corresponding light collected by the bolometric photodetector
induces a signal of ∼0.33 keV. Thus, a 0𝜈2𝛽 decay signal (∼3 MeV) corresponds to a ∼ 1 keV pulse in
the LD. This allows us to estimate the signal-to-noise ratio once we know the baseline width in energy.

The assembled LDs were tested in a pulse-tube dry cryostat at ĲCLab (France), housing a
dilution unit capable of reaching a base temperature around 12 mK [71]. The two copper frames
carrying the LDs were placed on top of each other (figure 1, right) and screwed to a spring-suspended
plate in the cryostat experimental volume. The floating plate is thermally connected to the coldest
point of the dilution unit — the mixing chamber — by a soft copper link and is suspended by four
stainless-steel springs to reduce the vibrations coming from the cryostat body. This suspension
system is characterized by a vertical oscillation frequency of ∼ 3 Hz and a horizontal (pendulum)
oscillation frequency of ∼ 1 Hz. A pulse-tube cryocooler is used to cool down the 80 K and 4 K
thermal stages of the cryostat avoiding the use of cryogenic liquids. This part of the refrigeration
system is a dominant source of vibrational noise for bolometers, particularly for LDs [49, 72]. The
CUORE cryostat [73], which will host CUPID, is equipped with five operational pulse tubes (four of
them are used during the CUORE data taking), but no LD has ever been tested there. We consider
therefore the present experiment as a preliminary but relevant validation of the CUPID LDs and
their mechanical structure in a challenging environment in terms of vibrations.

3 Data taking and processing

In an NTD-based bolometer, as implemented in CUORE and its predecessors (CUORE-0, Cuoricino,
Mi-DBD [74]), CUPID-0, and CUPID-Mo, the phonon signal is converted to an electrical pulse by
flowing a constant current in the high-resistance (MΩ scale) thermistor and registering the voltage
changes across it. The current is injected through a load resistor, whose resistance (GΩ scale) is much
higher than the NTD resistance at the operation point. Low noise, DC-coupled, voltage-sensitive
amplifiers are used to read out the pulses. In the present experiment, the voltage output of the
thermistor — acquired using a predecessor of the CUORE front-end electronics [75] — is streamed
and stored continuously. We used a DAQ software to save on disk the data stream acquired through
a 16-bit analog-to-digital board with a sampling rate of 5 kS/s. The data are then processed offline
using a MATLAB-based analysis tool that was developed at ĲCLab [76]. The program extracts the
signal amplitudes applying the Gatti-Manfredi optimum filter [77], whose purpose is to maximise
the signal-to-noise (S/N) ratio in the signal bandwidth, providing the best estimation of the signal
amplitude under given noise conditions and with known signal shape.

The data processing starts by building a template for a measurement, which consists of a mean
pulse and of a noise spectrum. The mean pulse (with the signal’s amplitude maximum normalized
to one) is obtained by averaging over a certain number of pulses, tens–hundreds, chosen by visual
inspection within a specific amplitude range (muon bump region in this case). The noise power
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spectrum is built by exploiting a large number of baseline samples (∼10000) not populated by particle
pulses. Then, we applied optimum filtering to trigger events in the data stream. The optimum
triggering depends on two parameters: (i) the threshold, an amplitude value above which events
are tagged —it is chosen to be a multiple of the standard deviation of the filtered baseline (typically,
5𝜎) to avoid the triggering of noise fluctuations; (ii) a pulse-shape parameter called “correlation” (it
lies in the range [0, 1]), which quantifies how much the filtered pulse is similar to the mean pulse. In
fact, this parameter is the Pearson’s linear correlation coefficient between the individual pulse above
threshold and the mean pulse, both at the filter output (if they are identical, the correlation is equal to 1,
otherwise it is below 1). To be triggered, a pulse must have a correlation above a given fixed value. For
each triggered event, the data processing tool computes the amplitude estimated by the optimum filter
and a set of pulse-shape parameters; the parameters relevant for the present work are: the correlation,
the rise-time (pulse duration from 10% to 90% of the maximum amplitude in the rising part), and
the decay-time (pulse duration from 90% to 30% of the maximum amplitude in the decaying part).

4 Analysis of light detectors performance

After reaching the base temperature of the cryostat (∼ 12 mK), we performed a static characterization
of NTDs to map their resistance 𝑅 as a function of the temperature 𝑇 using a resistance bridge. In
this type of thermistors, the dependence of the resistance on the temperature, corresponding to the
variable range hopping conduction regime [78], is given by:

𝑅(𝑇) = 𝑅0 · exp

(√︂
𝑇0
𝑇

)
, (4.1)

where 𝑅0 (in Ω) depends mainly on the geometry of the thermistor, while 𝑇0 (in K) characterizes the
impact of the Ge doping and the compensation level and is independent of the thermistor size and
the thermal contact geometry.

The 𝑅(𝑇) data were acquired in the temperature range of 30–180 mK (below 30 mK the NTDs
resistances are too large to be acquired by our resistance bridge). It is convenient to represent such
data in log(𝑅) versus 1/

√
𝑇 , to make a linear fit and extract the 𝑅0 and 𝑇0 parameters. The resulting

𝑅0 and 𝑇0 values are shown in figure 2 (where LDs are indicated with the numbering adopted in the
set of 30 LDs prepared for the full tower). We found that the parameter 𝑇0 is substantially higher
than the one of a typical NTD of the same production batch with a larger size (e.g., 3 × 1 × 1 mm3

and 3 × 3 × 1 mm3 used in CUPID-Mo [54]). This leads to higher resistances at equal temperatures,
even when correcting for the corresponding geometrical factor. This could suggest that the 𝑅(𝑇)
behavior is affected by mechanical stresses induced by the glue on these small elements. It is known
that this mechanism tends to increase 𝑇0 and consequently the resistance at a given temperature. For
example, the typical value for 𝑇0 is ∼ 3.8 K for a non-stressed thermistor with the same doping level
as the ones used for these LDs, to be compared with the range 4.4–5.6 K observed here (figure 2).

For the bolometric test, the detector plate temperature was stabilized at 15 mK. The optimum
working points were obtained prior to data taking by choosing the bias current that provides the highest
S/N ratio. In order to monitor the signal amplitude during the working point optimization, we used a
room-temperature LED (820 nm) to inject periodically a burst of photons through an optic fibre to the
experimental cavity, shining the LDs. At the optimum working point, where the applied bias currents
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Figure 2. Low-temperature 𝑅(𝑇) characterization of four NTDs, used to instrument the light detectors in the
present study, in terms of 𝑅0 and 𝑇0 parameters (see text). The values are obtained from the 𝑅(𝑇) data in the
fit range of 0.03–0.18 K. The characterization was performed with the NTDs already glued at the Ge wafers.

are in the range 1.5–2 nA, the resistances of the NTDs lay in the interval 3–7 MΩ, corresponding
to temperatures around 25–30 mK. Figure 3 shows an example of a current-voltage (IV) curve of one
of the LDs illustrating the best S/N ratio working point. As foreseen from the results of the NTD
characterization (see figure 2), the NTDs showed very high resistances (∼0.1–1 GΩ) when applying
low bias (fraction of nA), accompanied by a noisy baseline and bouncing pulse shapes (illustrated in
the inset of figure 4). This oscillating behaviour is often observed in very high-impedance bolometers
and is related to the combination of the intrinsically inductive response of the bolometer [79–81],
its high resistance, and the parasitic electrical capacitance of the readout cables.

Bolometric signals of LDs operated at the chosen working points are shown in figure 4. The
rise-times are in the 1.7–2 ms range, about a factor 2 longer than the CUPID goal [43]. Detector
speed is important, as a fast LD can be crucial to mitigate the background induced by random
coincidences of events from 2𝜈2𝛽 decay by rejecting pile-up via pulse-shape discrimination [67–70].
LDs can be made faster —keeping the current design— by acting on the NTD doping level, so that
they have lower resistances at the same temperature, and by improving the coupling with the wafer
with bonding techniques more efficient than gluing, for example the eutectic process [82]. Also, a
faster response can be achieved by a stronger NTD polarization, with the cost of detector sensitivity
and noise degradation [83].

The noise power density spectra at the working point for each LD are shown in figure 5,
compared with a typical signal in the frequency domain. Below 10 Hz, we observe that the noise
power spectra increase as the frequency decreases. We have noticed that this effect is smaller when
we switch temporarily the pulse tube off, showing that this rise is related to vibrations. The 50 Hz
peak and its harmonics are related to the electrical configuration external to the cryostat. Other
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Figure 3. The IV curve of LD9 at a floating plate temperature of 15 mK. The plot shows also the temperature
of the NTD at difference biases. The red dot represents the optimum working point (the best S/N ratio) that
corresponds to an NTD resistance of 6.7 MΩ (29.8 mK temperature).
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Figure 4. Normalized mean pulses of four LDs measured at the optimum working point (corresponding to a
high NTD bias, at a few nA current) with a detector plate temperature of 15 mK. Inset: mean pulse of a LD at
low NTD bias (0.1 nA corresponding to 80 MΩ of the NTD resistance) which shows a comparatively slow
signal with a bouncing pulse shape.
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Figure 5. The noise power density spectra of the LD readouts compared with a signal of 1 keV in the frequency
domain for one detector. This amplitude corresponds to a light signal associated to a full 𝑄𝛽𝛽 energy release.
To obtain the frequency representation of the signal, we take the square of the module of its Fourier transform,
which has units V2/Hz2. Then, we multiply it by the frequency bin in order to obtain the same units as the
noise power density (V2/Hz). The useful bandwidth is approximately 5–50 Hz. The low frequency noise
spoils significantly the LD performance. Some peaks associated to vibrations are visible in the 10–50 Hz
range. The Bessel cutoff frequency is 675 Hz. The computation of the sensitivities (in μV/keV) given in the
legend is explained in the text.

peaks appear in the region 10–50 Hz; they are connected to vibration modes of the cryostat and
cabling and do not change when the pulse tube is switched off. The effect of the noise peaks can be
mitigated during data processing using the optimum filter. We remark that the total intrinsic noise
(amplifier input noise as well the Johnson noise from the NTD thermistor and the load resistor) is
expected to be in the range (3–4) × 10−17 V2/Hz. Only in the region 10–40 Hz, the noise spectra
approach these values (see figure 5), showing that there is still a wide margin of improvement by
reducing the spurious noise sources, specially related to vibrations.

The energy calibration of the LDs was obtained by exploiting an X-ray peak originated from the
X-ray fluorescence of copper, induced by the detector-holder exposition to 𝛾’s and muons from the
environmental radioactivity. The Cu characteristic X-rays feature an intense K𝛼 peak with an energy
of 8.05 keV, which is visible in the low energy part of the LD measured spectra, as illustrated in figure 6.

A test on the LD performance over a broad energy range was performed, as this may provide
interesting details on the resolution. For this, a 𝛾 calibration was carried out by placing a 133Ba
source (with an activity ∼1 MBq) outside the cryostat, but at a distance of ∼1.5 m from the detectors
to minimize pile-up events. The most intense 𝛾 quanta (7%–62% of intensity) emitted by the 133Ba
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Figure 6. Comparison of the LD9 energy spectra acquired with (red; 9.3 h) and without (blue; 9.3 h) a 133Ba
source, which was placed outside the cryostat. The source data exhibit several peaks, which correspond to the
most intense 𝛾 quanta emitted by the 133Ba source. A bump of events, seen in both data at ∼ 200–500 keV
and peaked at ∼ 320 keV, is originated from cosmic muons passing through the Ge wafer. Particle interactions
with copper parts of the detector holder and the screen around it can induce Cu X-ray fluorescence detectable
by the LD. Inset: a fit with a simple model (Gaussian together with a linear background component) to the
most prominent 𝛾 line of 133Ba — at 356 keV — (18.5 h of measurements) and the extracted energy resolution.

source have energies of 81, 276, 303, 356, and 384 keV; the 356-keV 𝛾 line has the highest intensity.
Thanks to the comparatively thick Ge wafers used (0.5 mm, e.g. three times thicker than LDs of
CUPID-0 [52] and CUPID-Mo [54]), the 133Ba 𝛾s are well seen in the calibration data of LDs as
illustrated for one of them in figure 6. In addition to the full-energy peaks, two prominent Compton
edges are present in the spectrum. They are at the expected positions (207 and 164 keV) with respect
to the two most intense 𝛾 lines (356 and 303 keV respectively).

Due to the different positions of the LDs inside the cryostat, we could not see the 𝛾 lines on
LD23 as an internal thick copper cold plate inevitably intercepted the line of sight between this
detector and the source. The three other LDs showed an excellent energy resolution on the 𝛾 lines,
in particular the energy resolution of the most intense peak at 356 keV is measured with 0.7–1.8 keV
FWHM (i.e. 0.1%–0.2% RMS), which is as good as the energy resolution of Ge diodes [84–87],
but a factor 5 worse than the best resolution in this energy interval reported for a 𝛾 spectrometer
instrumented with transition edge sensors [88].

The widths of the X-ray peak and the 𝛾 lines are however much larger than the baseline noise,
as illustrated in figure 7. Moreover, the resolution of the low-energy X-ray peak (near surface
interaction) is about a factor 2 worse than that of more energetic 𝛾’s (bulk interaction). These effects
could be explained by a position dependence of the detector response on the impact point, typical
for small and thin absorbers [49, 59, 89]. Another possible reason of wider peaks is a variation
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Figure 7. LD9 energy resolution (FWHM) measured for baseline noise traces (bsln, in blue), the 8 keV Cu
X-rays (in red), and 𝛾 quanta of 133Ba detected in the 250–400 keV energy range (in black).

of the detector response in time, related to temperature drifts. This can also explain the observed
spread in the energy resolutions —much higher than the statistical error on the peak width— as the
instabilities can affect the individual devices in different ways. Unfortunately, the heaters were not
used in the present experiment, thus, these results can be improved with a more stable cryogenics (in
terms of temperature drifts and noise).

Taking into account the sea level location of the experiment, we can also exploit muons to
calibrate LDs, as proposed in [89] and taking into account the Ge wafer thickness. A muon-induced
distribution of events detected by each LD is illustrated in figure 6. We remark that the X-ray
calibration, the 𝛾 calibration and the position — at around 300 keV — of the bump due to cosmic
muons crossing vertically the Ge wafer are coherent when taking into account the detector slight
non-linearity.

Knowing the energy scale of the LDs, we can evaluate the detector sensitivity in terms of
a voltage signal (before amplification) per unit of deposited energy, typically given in μV/keV.
The obtained sensitivities of the LDs range between 1.1 and 1.5 μV/keV, which is good for such
NTD-instrumented devices [49, 54, 83, 90, 91], but not extraordinary due to the necessity of
operating NTDs at higher temperatures.

The baseline widths of the four CUPID LDs, as well as several other operational characteristics
of these devices, such as the working points, the time constants of the bolometric signal, the
sensitivities and the energy resolutions at 356 keV are summarized in table 1.

The baseline noise width of the filtered data of the LDs was spanning between 70 eV to 90 eV
RMS, which is typical for such devices equipped with an NTD sensor, used in several previous
experiments [36, 54, 57, 58, 90, 92]. Unlike most of these searches, CUPID has an open detector
structure [58] and does not use an optical reflector around the absorber. This is indispensable for
surface background rejection, as already discussed. This decreases light collection that results in
about twice lower signal in the LD compared to detectors surrounded by a reflective film [54, 57, 59].
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Table 1. Performance of four LDs tested in a pulse-tube cryostat. For each light detector we report the
working point of the thermistor (NTD resistance 𝑅NTD for a given current 𝐼NTD), characteristic times of
rising and descending parts of the bolometric signal (rise- and decay-time parameters, 𝜏𝑟 and 𝜏𝑑), detector
sensitivity represented by a signal voltage amplitude per unit of the deposited energy (𝐴𝑠), RMS baseline
width (RMS𝑏𝑠𝑙𝑛) and energy resolution at 356 keV 𝛾s (FWHM356). The last row reports the harmonic mean
values of the parameters.

LD# 𝑅NTD 𝐼NTD 𝜏𝑟 𝜏𝑑 𝐴𝑠 RMS𝑏𝑠𝑙𝑛 FWHM356

(MΩ) (nA) (ms) (ms) (μV/keV) (eV) (keV)
LD7 4.8 2.1 1.7 6.4 1.3 73(1) 1.84 ± 0.16
LD9 6.7 1.8 2.0 6.5 1.4 70(1) 0.71 ± 0.05
LD23 6.2 1.7 1.7 6.2 1.5 73(1) –
LD28 3.7 2.1 1.8 9.8 1.1 89(1) 0.91 ± 0.08
Mean 5.1 1.9 1.8 7.0 1.2 76

This requires high performance LDs for 𝛼 rejection, that translates in the CUPID goal of 100 eV
RMS for the baseline width. This is needed to reject about 99.9% of 𝛼 particles preserving about
90% of 𝛾(𝛽) events [43]. The four LDs tested here meet this requirement, as stated above and shown
in table 1. It is important to stress once more that this test was performed in a pulse-tube cryostat,
where vibrational noise has an impact on the LD performance.

5 Conclusions

In this paper a description of the CUPID baseline LD assembly was covered, in addition to the first
results on the performance of four LDs tested in a pulse-tube cryostat. The RMS baseline resolution
showed to comply with the CUPID goal (100 eV RMS) with good reproducibility (70, 73, 73 and
89 eV RMS). Detector rise-times (∼ 2 ms) must be shortened to achieve the CUPID objective, but
this can be obtained by reducing the operation resistance of the thermistors —acting on the geometry
and/or on the doping level— and by improving the thermal connection between the wafer and the
NTD. Excellent energy resolutions were observed in a 𝛾 calibration, that was performed to validate
the energy scale of the detectors. In particular, one LD exhibited an energy resolution of 0.71(5)
keV FWHM at 356 keV, which is similar to the best performing Ge semiconductor 𝛾 detectors at that
energy. Currently, a validation of a full CUPID tower containing 30 LDs (including the four here
characterized) and 28 Li2MoO4 crystals, is ongoing in the Gran Sasso underground laboratory in Italy.
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