19 research outputs found

    Extremal black hole horizons

    Get PDF

    Uniqueness Theorem for Black Hole Space-Times with Multiple Disconnected Horizons

    Full text link
    We show uniqueness of stationary and asymptotically flat black hole space-times with multiple disconnected horizons and with two rotational Killing vector fields in the context of five-dimensional minimal supergravity (Einstein-Maxwell-Chern-Simons gravity). The novelty in this work is the introduction in the uniqueness theorem of intrinsic local charges measured near each horizon as well as the measurement of local fluxes besides the asymptotic charges that characterize a particular solution. A systematic method of defining the boundary conditions on the fields that specify a black hole space-time is given based on the study of its rod structure (domain structure). Also, an analysis of known solutions with disconnected horizons is carried out as an example of an application of this theorem.Comment: 28 pages, 5 figures. v3: Further improvements on uniqueness theorem, Lemma introduced for clarity of derivation, new quantities introduced to treat special case with zero flux, refs. added, typos fixe

    M2-M5 blackfold funnels

    Get PDF
    We analyze the basic M2-M5 intersection in the supergravity regime using the blackfold approach. This approach allows us to recover the 1/4-BPS self-dual string soliton solution of Howe, Lambert and West as a three-funnel solution of an effective fivebrane worldvolume theory in a new regime, the regime of a large number of M2 and M5 branes. In addition, it allows us to discuss finite temperature effects for non-extremal self-dual string soliton solutions and wormhole solutions interpolating between stacks of M5 and anti-M5 branes. The purpose of this paper is to exhibit these solutions and their basic properties.Comment: 19 pages, 5 figures, harvmac; typo corrected in equation (3.19

    Inverse Scattering Construction of a Dipole Black Ring

    Full text link
    Using the inverse scattering method in six dimensions we construct the dipole black ring of five dimensional Einstein-Maxwell-dilaton theory with dilaton coupling a = 2(2/3)^(1/2).The 5d theory can be thought of as the NS sector of low energy string theory in Einstein frame. It can also be obtained by dimensionally reducing six-dimensional vacuum gravity on a circle. Our new approach uses GL(4, R) integrability structure of the theory inherited from six-dimensional vacuum gravity. Our approach is also general enough to potentially generate dipole black objects carrying multiple rotations as well as more exotic multi-horizon configurations

    Uniqueness and nonuniqueness of the stationary black holes in 5D Einstein-Maxwell and Einstein-Maxwell-dilaton gravity

    Full text link
    In the present paper we investigate the general problem of uniqueness of the stationary black solutions in 5D Einstein-Maxwell-dilaton gravity with arbitrary dilaton coupling parameter containing the Einstein-Maxwell gravity as a particular case. We formulate and prove uniqueness theorems classifying the stationary black hole solutions in terms of their interval structure, electric and magnetic charges and the magnetic fluxes. The proofs are based on the nonpositivity of the Riemann curvature operator on the space of the potentials which imposes restrictions on the dilaton coupling parameter.Comment: 21 pages, LaTe

    Black ringoids: spinning balanced black objects in d >= 5 dimensions - the codimension-two case

    Get PDF
    We propose a general framework for the study of asymptotically flat black objects with k+1 equal magnitude angular momenta in d >= 5 spacetime dimensions (with 0 0 are dubbed black ringoids. Based on the nonperturbative numerical results found for several values of (n, k), we propose a general picture for the properties and the phase diagram of these solutions and the associated black holes with spherical horizon topology: n = 1 black ringoids repeat the k = 0 pattern of black rings and Myers-Perry black holes in 5 dimensions, whereas n > 1 black ringoids follow the pattern of higher dimensional black rings associated with 'pinched' black holes and Myers-Perry black holes
    corecore