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1 Introduction

Despite enormous progress [1–22], the solution space of asymptotically flat black holes

and its properties in vacuum Einstein gravity in D ≥ 5 is still far from being completely

understood.1 This is in particular the case as D increases or when one considers multi-

spinning black holes and their extremal limits.

The recent development of numerical techniques has given a better grasp of the phase

structure of singly-spinning black holes [15–19, 22] but even in this simpler situation most

studies are limited to a few number of topologies and to the assumption of single horizons.

Exact and analytic solutions are also scarce. The Myers-Perry solution is the only

known vacuum black hole solution in D ≥ 6 [1]. In D = 5, following the discovery of

the singly-spinning black ring [2] and the realisation that the rod structure could be used

to generate new solutions [25, 26], many new regular black hole spacetimes were found,

with and without disconnected horizons [4, 6–10]. This, however, is far from exhausting

all possible geometries and topologies in higher dimensions.

1There is also is a very rich phase structure for black holes in vacuum Einstein gravity with Kaluza-Klein

asymptotics (see refs. [23, 24]).
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Hawking’s topology theorem states that horizon cross sections in D = 4 must have S
2

topology [27]. The generalisation of this theorem to higher dimensions states that cross

sections of stationary horizons are of positive Yamabe type [28]. However, this only implies

loose restrictions on horizon topology, as nor have all topologies satisfying this condition

been classified neither is it known that for every topology satisfying this condition there

will be a corresponding regular black hole solution.

The difficulty in understanding gravity in higher dimensions has prompted the devel-

opment of perturbative but analytic methods. The blackfold effective theory [12, 13] has

proven to be a powerful tool to scan for the existence of new black hole solutions in D ≥ 5.

In particular, it has shown to be a framework that realises many new horizon topologies,

whose cross section is of positive Yamabe type [14, 20, 21, 29]. It has also given several

examples of new classes of black hole solutions, which despite sharing the same topology,

differ in their geometry and asymptotic charges. Such is the case for black rings, helical

black rings and helicoidal black rings in D = 6 which all have topology S
1×S

3 but not the

same properties [14, 21].

Except for the Myers-Perry [1] and the doubly-spinning black ring solution [4], each

black hole horizon of all the known exact solutions in D = 5 mentioned above only has one

non-vanishing angular momentum. In-depth studies of the black saturn solution [6, 30],

concentric black ring solution (di-rings) [7, 8] and orthogonal black ring solution (bi-

rings) [9, 10] have shown that they do not exhibit regular extremal limits, or extremal limits

that do not involve naked singularities. The only known solutions that admit regular ex-

tremal limits are the Myers-Perry and the doubly-spinning black ring solution. Proceeding

by induction, this supports the statement that two non-vanishing and independent angular

momenta are required in order to have an extremal stationary asymptotic flat black hole

solution in D = 5.2

Following this line of thought, this paper uses the blackfold effective theory for station-

ary Kerr-branes developed in [31–34] in order to provide strong evidence for the existence

of many doubly- and multi-spinning extremal black holes in D ≥ 5. These black holes are

ultraspinning in one or more angular directions but have finite angular momentum in one

direction. This finite angular momentum satisfies the Kerr bound, allowing these black

holes to have regular extremal limits. The latter thus implies that the effective blackfold

worldvolume has co-dimension 3. In particular, besides showing that the specific cases of

extremal doubly-spinning black rings and Myers-Perry black holes can be reproduced, it

is shown that by allowing each horizon to be doubly-spinning, black saturns, di-rings and

bi-rings in D = 5 can have regular extremal limits. This is done by perturbatively placing

a black ring horizon around an extremal doubly-spinning Myers-Perry black hole or black

ring solution. Some of these constructions are generalised to D ≥ 6.

This paper is one in a series of two, where new doubly- and multi-spinning black hole

solutions with disconnected horizons are found using the blackfold effective theory for Kerr

branes. The work presented here focuses on extremal black holes, while [34] presents a

2This claim does not contradict earlier literature since there is no complete classification of extremal

vacuum asymptotically flat black holes in D ≥ 5.
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detailed study of finite temperature black holes. This paper is organised as follows. In

section 2, the effective blackfold theory for stationary Kerr branes is introduced along

with the notation required for the later sections of this work. In section 3, we focus on

extremal black holes in D = 5 and study their phase diagram. In section 4 we study a

few examples of extremal black holes in D ≥ 6, in particular, we provide a brief study of

higher dimensional black saturns. In section 5 we conclude with open questions and future

research directions.

2 Effective theory for extremal stationary Kerr branes

In this section we introduce the effective theory for stationary Kerr branes as developed

in [34], which is heavily based on the results of [31–33]. We introduce the finite temperature

case, valid for any codimension, to begin with and obtain the extremal version by taking

the zero temperature limit, showing that only the codimension 3 case is regular in the limit.

This effective theory consists of bending Kerr branes (Kerr black holes with additional p

flat spatial directions) over an arbitrary submanifold. This theory allows to construct new

extremal solutions for which one of its angular momenta is finite but the remaining ones

are ultraspinning. In order to consider further finite angular momenta, one must deal with

the effective theory of Myers-Perry branes, which is considered in [34].

2.1 Geometry and notation

We consider a (p+ 1)-dimensional submanifold Wp+1 with Lorentzian signature immersed

in a D-dimensional background spacetime endowed with metric gµν(x
µ) where xµ are back-

ground coordinates. Greek indices µ, ν, . . . label spacetime indices. The submanifold has

co-dimension (n+2) so that the spacetime dimension can be written as D = n+p+3. The

location of the surface is described by the embedding map Xµ(σa) where σa , a = 0, . . . , p

are coordinates on the submanifold. Given the embedding map, one may explicitly define

a set of tangent vectors eµa and implicitly define a set of normal vectors nµ
i according to

eµa = ∂aX
µ , gµνe

µ
an

ν
i = 0 , gµνn

µ
jn

ν
i = δij , (2.1)

where the indices i, j, . . . label the normal (n+ 2) directions. With this we may define the

induced metric γab, extrinsic curvature Kab
i and the spin connection ωa

ij as

γab = gµν(X)eµae
ν
b , Kab

i = nµ
i∇ae

µ
b , ωa

ij = nµ
i∇an

µj , (2.2)

where ∇a is the Christofell connection compatible with both gµν and γab and does not

act on the normal indices i, j. Following [33], we focus on background geometries with a

q-number of U(1) isometries corresponding to a q-number of transverse spin planes. We

define the Levi-Civita symbol on each spin plane by ǫij(q) so that the spin connection can

be decomposed according to

ωa
ij =

∑

q

ω(q)
a ǫij(q) , ω(q)

a =
1

2
ǫ
(q)
ij ωa

ij , (2.3)

– 3 –
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where ω
(q)
a is the normal fundamental one-form on a given spin plane. This is enough

to construct a free energy functional that describes the stationary sector of the effective

theory governing long-wavelength deformations of the Kerr brane.

2.2 Effective free energy functional

In order to construct an effective free energy functional for deformations of Kerr branes, we

assume the existence of a perturbative parameter ε ≪ 1 which, for a surface that is bent,

is typically associated with the brane thickness r0 and the extrinsic curvature scale R of

the submanifold such that ε ≡ r0/R. The precise form of ε is case dependent [20] but will

always involve the temperature T or the transverse angular velocity Ω̂ of the configuration

and some other scale related to the deformation that is being applied to the brane. Keeping

this in mind, the effective free energy can be constructed in a derivative expansion and to

first order in ε it takes the form [32, 33]

F [T,Ω(l), Ω̂, Xµ, gµν ] = −
∫

Bp

√
|γ| (P (T , ω) + 2J (T , ω)uaωa + . . .) , (2.4)

where the dots represent higher-order corrections which we will not explicitly deal with in

this paper. All quantities appearing in (2.4) are evaluated on the hypersurface xµ = Xµ.

In (2.4) we have introduced Bp, which represents the spatial part of the submanifold world-

volume after Wick rotating the induced metric γab and integrating over the time coordinate

with period 2π/T . The quantities T and ω denote the local brane temperature and local

transverse angular velocity and are related to the global (constant) temperature T and

normal angular velocity Ω̂ according to [33]

T =
T

k
, ω =

Ω̂

k
, (2.5)

where k is the modulus of the worldvolume Killing vector field ka which we take to be of

the general form

ka∂a = ∂τ +
∑

l

Ω(l)∂φ(l)
, (2.6)

with τ being the time coordinate on the submanifold and Ω(l) the angular velocity on

each angular coordinate φ(l) of the worldvolume. We assume that this Killing vector field

can be pushed-forward to a background Killing vector field, i.e., kµ = kaeµa. We also

assume that the transverse angular velocity Ω̂ is the angular velocity associated with a

background transverse Killing vector field k
µ
⊥∂µ = Ω̂∂ψ where ψ labels the transverse

angular coordinate.

The stress tensor that follows from (2.4) by varying with respect to γab is that of an

effective fluid described by a local temperature T and chemical potential ω. The vector

ua appearing in (2.4) is the velocity ua = ka/k of the fluid living on the submanifold, unit

normalised such that uaua = −1. Furthermore, we assume that the spin-orbit coupling

behaves as J (T , ω)uaωa ∼ O (ε). Note that since the Kerr brane is singly-spinning it can

only have transverse angular momentum in one spin plane, therefore we have omitted the

index (q) from ω
(q)
a . The scalars P and J appearing in (2.4) denote the pressure density

– 4 –
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and the density of transverse angular momentum, respectively, of the fluid and are given

by [31]

P = −
Ω(n+1)

16πG
rn0

(
1 +

b̂2

r20

)
, J =

Ω(n+1)

8πG
rn0 b̂

(
1 +

b̂2

r20

)
, (2.7)

where Ω(n+1) is the volume of the transverse (n + 1)-sphere, G is Newton’s constant, r0

is the brane thickness and b̂ the density of intrinsic rotation. The pressure and transverse

angular momentum densities satisfy the first law of termodynamics dP = −sdT + J dω.

In the stationary case these are related to the global potentials T, Ω̂ according to [34]

r0
k

=
2(n−1)πT+

√
4π2T 2−(n−2)nΩ̂2

2(4π2T 2+Ω̂2)
,

b̂

k
=

nΩ̂2+2πT

(
2πT−

√
4π2T 2−(n−2)nΩ̂2

)

2Ω̂(4π2T 2+Ω̂2)
,

(2.8)

with the condition that 4π2T 2−(n − 2)nΩ̂2 ≥ 0 which is a remnant of the Kerr bound

of the Kerr brane. In the limit in which the Kerr brane is ultraspinning, i.e. b̂/r0 ≫ 1,

these quantities agree with those obtained in [21] by integrating out cross-sections of the

worldvolume of non-rotating branes. Also, when sending Ω̂ → 0, (2.8) agrees with the

corresponding quantities for non-spinning branes [13].

2.3 The extremal limit

Taking the extremal limit amounts to sending T → 0. Setting T = 0 in (2.8) leads to

r0|T=0 = k

√
(2− n)n

2Ω̂
, b̂|T=0 = k

n

2Ω̂
, (2.9)

where, without loss of generality, we have assumed that Ω̂ > 0. We see from (2.9) that

the reality of r0 and the requirement of a non-vanishing thickness3 implies that n = 1.

Therefore, extremal Kerr branes can only be used to construct new solutions with n = 1.

We assume this to be the case in the remaining of this paper. Introducing (2.9) into the

effective free energy (2.4) yields

F [Ω, Ω̂, Xµ, gµν ]|T=0 =
1

4Ω̂G

∫

Bp

√
|γ|k

(
1− 2

Ω̂
kuaωa

)
, (2.10)

where we have used that Ω(2) = 4π since we have set n = 1 in (2.7). From (2.10) we

observe that the effective free energy is proportional to k, which is a result that holds

even if a non-zero temperature had been considered. This implies that the zeroth or-

der equilibrium condition that is obtained by solving the equations of motion that arise

from varying (2.10) is the same as that for finite temperature uncharged and non-spinning

branes [13]. Differences appear when corrections are considered. On the other hand, the

thermodynamic properties of the solutions are completely different. Configurations found

3A vanishing thickness implies a vanishing mass and here we wish to construct black holes with non-

vanishing mass. In fact, for n = 2, this limit corresponds to a naked singularity of the Kerr string.

– 5 –
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in previous works [14, 20, 21] may also exist at extremality as long as there are no symmetry

constraints.4

2.4 Equations of motion

The equations of motion that arise from (2.10) can be obtained by either performing a

diffeomorphism of the background coordinates such that δgµν = 2∇(µξν) for some infinites-

imal vector field ξµ keeping the embedding map fixed [35] or by slightly deforming the

embedding map Xµ → Xµ + δXµ and requiring invariance of the free energy (2.10) under

infinitesimal rotations of the normal vectors [32, 33]. In both cases, the global potentials

Ω(l), Ω̂ are kept fixed under the variation. The non-trivial equation of motion and boundary

conditions for normal deformations read [32]5

T abKab
i = 2nµ

i∇b

(
Sa

jµKab
j

)
+ SakjRi

akj , (2.11)

ηaSaij |∂Wp+1 = 0 , ηa

(
T abeµb − 2Sb

i
j
nµ

jKb
ai
)
|∂Wp+1 = 0 , (2.12)

where Rµνλρ is the Riemann curvature tensor of the background and ηa is the normal vector

to the submanifold boundary ∂Wp+1. We have introduced the worldvolume stress tensor

T ab and spin current Saij which are defined as

T ab = − 2√
|γ|

δF
δγab

, Sa
ij = − 1√

|γ|
δF
δωa

ij
. (2.13)

Particularising to the case of the free energy (2.10), the stress tensor and spin current read

T ab = − 1

4Ω̂G
k

(
1− 2

Ω̂
kucωc

)
γab +

1

4Ω̂G
k

(
1− 2

Ω̂
kucωc

)
uaub , Saij =

1

4Ω̂2G
k2uaǫij ,

(2.14)

in which the stress tensor takes the form of a perfect fluid with pressure P and energy

density E such that

P = − 1

4Ω̂G
k

(
1− 2

Ω̂
kucωc

)
, E = −2P . (2.15)

Ignoring the corrections of O (ε) in the effective free energy (2.10), which amounts to

ignoring the right hand side of (2.11) and the terms involving Saij in (2.12), leads to the

equation of motion and boundary condition

Ki = uaubKab
i , k|∂Wp+1 = 0 , (2.16)

where Ki ≡ γabKab
i is the mean extrinsic curvature. The equation of motion above

expresses a balance of mechanical forces between brane tension and fluid acceleration in

the normal direction while the boundary condition implies that the fluid must move at the

speed of light on the boundary.

4In particular, ref. [14] shows the possibility of finding non-extremal helical black rings in D = 5 but also

shows the impossibility of having extremal helical black rings as they break the necessary U(1) symmetry

required for a regular extremal limit.
5The parallel projection of the deformation is automatically satisfied due to reparametrization invariance

of (2.10). Rotations of the normal vectors leave (2.10) invariant.

– 6 –
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2.5 Regime of validity

The effective theory employed here requires the existence of a hierarchy of scales. There

can be multiple hierarchies of scales (or multiple perturbative parameters) depending on

the type of deformation applied to the brane: worldvolume, background, bending or spin

deformations. As explained in [20], for stationary configurations, the length scales asso-

ciated with each of these deformations at a given order can be determined by the terms

appearing in the effective free energy (2.4) at a higher order. At the specific order that we

are dealing with here, the validity of the approach considered here requires

r0 ≪
(
|uaωa|−1 , |R|− 1

2 , |abab|−
1
2 , |ωabω

ab|− 1
2 , |KiK

i|− 1
2 , |R|||−

1
2 , |R//|−

1
2

)
, (2.17)

where we have defined R|| = γacγbdRabcd and R// = uaucγbdRabcd and introduced the

worldvolume Ricci scalarR as well as the fluid acceleration a
b and vorticity ωab according to

a
b = ua∇au

b , ωab = P c
aP

d
b∇[cud] , (2.18)

where Pab = γab + uaub is the projector orthogonal to ua. The first condition in (2.17)

determines the hierarchy of scales due to spin deformations, while the following three de-

termine the hierarchy of scales for worldvolume deformations. The term |KiK
i|− 1

2 is the

scale associated with bending while the last two in (2.17) determine the scales associated

with the background curvature.

The last six terms appearing in (2.17) are the higher order corrections that can appear

in (2.4) [32]. All terms appearing in (2.17), including the coupling to the spin connection,

are finite thickness corrections to the brane geometry. As explained in [31], these corrections

dominate over backreaction or self-force corrections (which are not included in (2.4)) only

when n > 2. Since the case dealt with in this paper is the specific case of n = 1, one

cannot expect, for example, that the corrections due to the spin-orbit coupling in (2.4)

will yield the complete result at first order in O(ε). While this specific term is important

for evaluating the regime of validity, taking it into account in the equilibrium condition

can only yield a partial answer. For this reason, we only briefly consider its effect when

analysing the solution space of extremal black saturns. We leave the cases of n > 2 for a

future publication [34].

Besides the requirements (2.17), other specific cases impose further restrictions. In

particular, if the submanifold has a boundary, say located at ρ+, and ǫ is the distance

away from it, then we must require [20]

ρ+ − ǫ ≫ ℓ , (2.19)

where ℓ is the minimum scale that can be probed with the long-wavelength expansion

introduced here. This in particular implies that, a priori, submanifolds with boundaries lie

outside the regime of validity of this approach. However, there are certain cases for which

the method employed here has worked better than expected, such as in the case of Myers-

Perry black holes [14, 20]. Another example of this will be given in section 4.1 in which

extremal Myers-Perry black holes are shown to be accurately captured by this formalism.

– 7 –
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In addition, if configurations are being constructed in backgrounds with other black

hole horizons, such as Myers-Perry black hole or black ring horizons, one must require that

the distance d, between the location of the black hole horizon in the background and the

location of the submanifold, satisfies [14]

r0 ≪ d , (2.20)

such that the interaction between the two horizons can be neglected.

2.6 Thermodynamics

The free energy (2.10) allows to extract the thermodynamic properties of the configura-

tions by taking appropriate derivatives with respect to the thermodynamic potentials. In

particular, the angular momenta J(l) along the worldvolume directions and the transverse

angular momentum J⊥ are given by

J(l) = − ∂F
∂Ω(l)

|T=0 = − 1

4Ω̂G

∫

Bp

√
|γ|

[
∂k

∂Ω(l)

(
1− 2

Ω̂
kuaωa

)
− 2

Ω̂

∂ka

∂Ω(l)
ωa

]
,

J⊥ = −∂F
∂Ω̂

|T=0 =
1

4Ω̂2G

∫

Bp

√
|γ|k

(
1− 4

Ω̂
kuaωa

)
.

(2.21)

The thermodynamic mass can be obtained by using the fact that the free energy, at zero

temperature, satisfies the relation

F|T=0 = M −
∑

l

Ω(l)J(l) − Ω̂J⊥ . (2.22)

These thermodynamic quantities obey the Smarr relation

(D − 3)M − (D − 2)

(∑

l

Ω(l)J(l) + Ω̂J⊥

)
= T̂ , (2.23)

where T̂ is the total integrated tension or binding energy. This tension is non-trivial if

there are length scales associated with the background spacetime gµν . If the background

is Minkowski, the tension vanishes but if the background is, for example, a Schwarzschild

black hole with mass parameter m, the tension can be obtained using the formula [36]

T̂ = m
∂F
∂m

|
Ω̂,Ω=fixed

. (2.24)

The configurations constructed in this paper are extremal but they still have an associated

entropy. This entropy cannot be obtained from the free energy (2.10) as it does not depend

on T but it may be obtained from (2.4) followed by taking the zero temperature limit. We

thus find the entropy

S = −∂F
∂T

|T→0 =
π

2Ω̂2G

∫

Bp

√
|γ|k

(
1 + 4

k

Ω̂
uaωa

)
. (2.25)

In this work we consider worldvolumes in the background of other black holes, such as

rings surrounding a Myers-Perry black hole. In such situations, as explained in [36], the

– 8 –
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mass M introduced in (2.22) does not correspond to the physical Komar mass measured

near the black hole horizon associated with the embedded submanifold. The physical mass

must take into account the binding energy and reads [36]

M̂ = M − T̂

(D − 3)
. (2.26)

When dealing with such composite systems of two horizons we introduce the total (asymp-

totic) mass MT , angular momenta JT
(l), J

T
⊥ and entropy ST according to

MT = Mbg + M̂ , JT
(l) = Jbg

(l) + J(l) , JT
⊥ = Jbg

⊥ + J⊥ , ST = Sbg + S , (2.27)

where Mbg, Jbg
(l) , J

bg
⊥ , Sbg are the same thermodynamic quantities associated with the back-

ground black hole. The fact that the total mass, angular momenta and entropy is a simple

addition of the quantities associated with each horizon can be proven in full generality [37].

3 Extremal black holes in D = 5

In this section, using the effective theory introduced above, we provide evidence for the

existence of many new doubly-spinning extremal black holes with isolated and disconnected

horizons in D = 5 asymptotically flat space. These black holes are ultraspinning in one

rotation plane and have finite rotation in the other rotation plane. This allows to, for

example, construct extremal doubly-spinning black rings, which we compare against the

analytic Pomeransky-Sen’kov extremal black ring solution and find perfect agreement. This

is followed by the construction of novel extremal black holes with disconnected horizons,

including extremal black saturns, di-rings and bi-rings. At the end of this section, we study

the phase structure of extremal black holes in D = 5.

3.1 Extremal doubly-spinning black rings

In this section we show that the effective theory described in section 2 accurately repro-

duces the extremal limit of the exact analytic Pomeransky-Sen’kov black ring solution [4].

Consider the background metric to be Minkowski space in D = 5 written in the form

ds2 = −dt2 + dr2 + r2
(
dθ2 + sin2 θdψ2 + cos2 θdχ2

)
, (3.1)

where 0 ≤ r < ∞ while the angular coordinates satisfy 0 ≤ θ ≤ π and 0 ≤ ψ, χ ≤ 2π.

In this metric we place a two-dimensional ring geometry of radius R by choosing the

embedding map

t = τ , r = R , θ = 0 , χ = φ . (3.2)

Setting the ring to rotate with angular velocity Ω along the φ direction and with angular

velocity Ω̂ along the transverse ψ direction leads to the induced metric, surface Killing

vector field and transverse Killing vector field

ds2 = −dτ2 +R2dφ2 , ka ∂a = ∂τ +Ω∂φ , k⊥
µ ∂µ = Ω̂∂ψ . (3.3)

– 9 –



J
H
E
P
0
3
(
2
0
1
8
)
0
9
9

The corresponding effective free energy (2.10) takes the form

F [Ω, Ω̂, R]|T=0 =
πR

2G

k

Ω̂
, k2 = 1− Ω2R2 , (3.4)

and is only composed of the zeroth order part since the normal fundamental one-form ωa

vanishes for the background (3.1). This is expected: since the background is not rotating,

there is no spin-orbit coupling. As advertised in section 2, in the case of single isolated

horizons, the variation of this effective free energy leads to the same equilibrium condition

as for configurations constructed out of non-spinning branes. For the case at hand, this

implies that the equilibrium condition is the same as for singly-spinning black rings [14]

Ω =
1√
2R

. (3.5)

The only non-trivial scale among those presented in (2.17) is the one associated with

bending, which implies that r0 ≪ R. Using (2.8), this implies that this construction is

valid when Ω̂R ≫ 1. Therefore, we identify the expansion parameter ε = (Ω̂R)−1 for the

present case.

3.1.1 Thermodynamics and comparison with the Pomeransky-Sen’kov

solution

The thermodynamic properties of these doubly-spinning black rings are easily computed

using formulae (2.21)–(2.27) and take the form

M =
3πR

G
r0 , Jχ =

√
2πR2

G
r0 , Jψ =

πR

Ω̂G
r0 , S =

4
√
2π2R

G
r20 , T = 0 . (3.6)

Using the fact that the brane thickness r0, as given in (2.8), can be written in terms of the

transverse angular velocity such that

r0 =
1

2
√
2Ω̂

, (3.7)

the thermodynamic quantities (3.6) can all be expressed in terms of the radius R and

the transverse angular velocity Ω̂. In order to describe the exact analytic solution, these

quantities should reproduce the Pomeransky-Sen’kov extremal black ring solution. Using

the Pomeransky-Sen’kov solution as written in [4], performing the following redefinitions

λ =
µ

R
, ν =

a2

R2
, k =

R√
2
, (3.8)

choosing the extremality condition a = µ/2 and taking the limit R → ∞, the thermody-

namic properties obtained in [9] become6

Ωχ =
1√
2R

, Ωψ =
1√
2µ

, M =
3πR

2G
µ , Jχ =

πR2

√
2G

µ ,

Jψ =
πR√
2G

µ2 , S =

√
2π2R

G
µ2 ,

(3.9)

6Note that the angular coordinates (φ, ψ) in [9] are (ψ, φ) in (3.9).
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where we have ignored higher order corrections in µ/R (equivalently, corrections in higher

powers of ε), with µ being the mass parameter and a the spin parameter of the doubly-

spinning black ring. The analytic results (3.9) from the limit of the exact solution are in

perfect agreement with (3.6)–(3.7) once one identifies Ωχ = Ω and Ωψ = Ω̂. We note that

the expressions for the black hole mass and angular momentum along the ψ direction are

actually exact, i.e. they do not receive corrections in Ω̂R. In section 3.5 we will compare

the phase diagram obtained using (3.6) with that of the exact solution and show that there

is good agreement up to values of Ω̂R ∼ 0.1. This provides strong evidence for the fact

that the effective theory of extremal Kerr branes reproduce the correct analytic results.

3.2 Extremal black saturns

In order to build extremal black saturns we consider the background geometry to be that

of a Myers-Perry black hole [1] with metric (see e.g. [25])

ds2 = −dt2 +
m2

Σ

[
dt− b sin2 θdψ − a cos2 θdχ

]2
+

Σ

∆
dr2 +Σdθ2

+ (r2 + b2) sin2 θdψ2 + (r2 + a2) cos2 θdχ2 ,

(3.10)

where we have introduced the two functions

Σ = r2 + b2 cos2 θ + a2 sin2 θ , ∆ = r2
(
1 +

b2

r2

)(
1 +

a2

r2

)
−m2 . (3.11)

The parameters a, b are the rotation parameters in the two rotation planes of the Myers-

Perry black hole and lie within the range −∞ < a, b < ∞. We are interested in the extremal

limit of the metric (3.10) for which there is a regular horizon. This is achieved when

{(m2 + a2 + b2)2 − 4a2b2 = 0 ∧ a, b 6= 0} , (3.12)

for which the horizon location at r = r+, such that ∆(r+) = 0, is given by

r+ =
√
|a|m− a2 . (3.13)

The reality condition on r+, together with the extremality condition (3.12), implies that

the rotation parameters satisfy −1 < a,b < 1, where we have defined the dimensionless

quantities a = a/m and b = b/m. At extremality, the angular velocities of the Myers-Perry

black hole reduce to

Ωψ = ± 1

m
, Ωχ = ± 1

m
, (3.14)

where the sign of Ωψ is given by the sign of b and the sign of Ωχ by the sign of a. This

naturally splits the solution space of black saturns in four different regions depending on

the signs of the rotation parameters: {Ωψ,Ωχ > 0 and 0 < a,b < 1}, {Ωψ > 0, Ωχ < 0 and

0 < b < 1,−1 < a < 0}, {Ωψ < 0, Ωχ > 0 and −1 < b < 0, 0 < a < 1}, {Ωψ,Ωχ < 0 and

−1 < a,b < 0}. The angular velocities (3.14) only depend on the mass parameter, while

the angular momenta depend on the rotation parameters (see e.g. [25])

Jψ =
π

4G
bm2 , Jχ =

π

4G
am2 , (3.15)

and therefore the magnitude of the rotation parameters will affect the ring configuration

that we will now consider.
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3.2.1 Black saturn embedding

In the extremal geometry (3.10) we embed a ring by choosing the same embedding map as

in (3.2). The induced metric is that of a rotating worldsheet

ds2 = −
(
1− m2

R2 + b2

)
dτ2 − 2a

m2

R2 + b2
dτdφ+

(
R2 + a2 +

a2m2

R2 + b2

)
dφ2 , (3.16)

while the worldvolume and transverse Killing vectors fields take the same form as in (3.3).

The modulus of the worldvolume Killing vector field and the determinant of the induced

metric take the form

k2 = 1− Ω2
(
R2 + a2

)
− m2(1− aΩ)2

R2 + b2
, γ = −a2 −R2

(
1− m2

R2 + b2

)
. (3.17)

Since (3.17) only depends on the sign of a but not on the sign of b, when introduc-

ing (3.17) into the effective free energy (2.10), and ignoring the higher order correction,

the resulting equilibrium condition will be insensitive to the sign of b. This implies that at

zeroth order, the four regions of solution space defined above collapse into two regions only

{Ωχ > 0 , 0 < a < 1} and {Ωχ < 0 , − 1 < a < 0}. However, these two regions exhibit

reflection symmetry, i.e. sending a → −a and Ω → −Ω leaves (3.17) unchanged. In order

for the configuration to be sensitive to the sign of b (or equivalent to the sign of Ωψ),

one needs to take into account the spin-orbit coupling in (2.10). We will first consider the

zeroth order case, starting off with the assumption of equal rotation parameters, and at

the end of this section consider the effect due to the first order correction.

3.2.2 Equal rotation parameters

In order to gain intuition, it is useful to consider the simplest case in which the centre

Myers-Perry black hole is rotating with equal angular momenta. In this case a = b = 1/2,

since the extremality condition (3.12) gives a + b = 1, with Ωψ,Ωχ > 0. There are two

possible equilibrium conditions, describing clockwise ‘+’ or anti-clockwise ‘-’ rotation

Ω =
1

R

16m5 ±
√
2|m2 − 4|

√
(4 +m2)(16 + 32m2 + 11m4)

(4 + 3m2)(16 + 3m4)
, m =

m

R
. (3.18)

However, not all radii R are allowed since we must have that k2, γ > 0. Using (3.17), this

implies that m > 2 for the ‘+’ branch and m−1 >
√

5
4 +

√
2 for the ‘-’ branch. This means

that the solution in the ‘+’ branch exists for any value of the radius up to the Myers-Perry

horizon (3.13) located at m = 2. In general one should not expect solutions with m ∼ 2

to be valid since they can violate the requirement (2.20) but we will provide a detailed

analysis of the regime of validity in the next section.

Note that when the centre black hole is removed (m = 0) we recover (3.5) with an

overall plus or minus sign. The two branches of solutions are qualitatively different as can

be seen in figure 1. The ‘+’ branch leads to extremal black saturn solutions for which the

ring is rotating along the S
1 in the same (clockwise) direction as the centre Myers-Perry

black hole. As the radius of the ring is increased and the gravitational force from the

– 12 –
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Ω

R

Figure 1. Ω as a function of R in units m = 1. The black line is the ‘+’ branch while the dashed

line is the ‘-’ branch.

centre black hole is negligible, i.e. in the limit m → 0, the angular velocity of the ring

approaches that of the Pomeransky-Sen’kov solution. As one approaches smaller radii, the

ring velocity approaches that of the speed of the light since k → 0 as m → 2. This is a

consequence of the fact that the gravitational pull of the centre black hole increases as the

distance between the ring and the black hole decreases. The ‘-’ branch consists of rings that

are rotating counter-clockwise with respect to the centre black hole. In the limit m → 0,

the ring velocity approaches that of the Pomeransky-Sen’kov solution but with an overall

negative sign. The ‘-’ branch has lower angular velocity than the ‘+’ branch for any value

of the radius. However, the velocity k of any point on the ring in the ‘-’ branch is higher

than in the ‘+’ branch. Since the ring is rotating counter-clockwise compared to the centre

black hole, there is an additional contribution to the velocity of each point on the ring

compared to the ‘+’ branch. This implies that the speed of light will be reached for larger

radii than in the case of the ‘+’ branch, thereby explaining why these two branches do not

exhibit reflection symmetry.

3.2.3 General solution for arbitrary rotation parameter

We now consider the general solution for an extremal ring surrounding an extremal Myers-

Perry black hole with a+b = 1. As in the previous case, the equilibrium condition has two

branches of solutions, one which rotates clockwise and another anti-clockwise with respect

to the centre black hole. This is given by the expression

Ω =
1

R

2abm3 ±
∣∣1 + a2 −ma

∣∣
√(

1 + b2
) (

b2 (2a2 − 8am+ 9m2) + (2a− 3m)2 + 2
)

g(m,a,b)
,

(3.19)

where we have defined the function

g(m,a,b) = 2 +
(
6a2 − 10am+ 5m2

)
− b

(
6a3 − 14a2m+ 10am2 − 3m3

)

− ab
(
2a4 − 8a3m+ 11a2m2 − 8am3 +m4

)
.

(3.20)

If a = b = 1/2 then (3.19) reduces to (3.17). The black hole rotation parameters a,b can

be either positive or negative leading to the four different regions of phase space, though
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k

R

∂
√−γ
∂R k

R

Figure 2. On the l.h.s. the ring velocity k is shown as a function of R in units m = 1 for the

values of the rotation parameter a = 1/10 (red), a = 1/2 (black) and a = 9/10 (blue) while on the

r.h.s. ∂γ
∂R

k is shown as a function of R for the same values of a in the ‘+’ branch. On the l.h.s., the

solid lines correspond to the ‘+’ branch while the dashed lines correspond to the ‘-’ branch. The

black line corresponds to the case of figure 1.

as explained above, at zeroth order, these regions collapse into two regions, which are

themselves equivalent by an appropriate reflection.

Region Ωχ > 0 and 0 < a, b < 1. In this case the centre black hole is rotating

in the clockwise direction along the χ direction. In the limit m → 0, (3.19) leads to

the equilibrium condition for the Pomeransky-Sen’kov solution in spheroidal coordinates

Ω−1 =
√
2
√
R2 + a2. In order to compare the same features between different values of the

rotation parameter, in figure 2 we depict the velocity of the ring k (which has the limit

k → 1/
√
2 as m → 0) as a function of the radius R for different values of the rotation

parameter as well as (∂
√−γ/∂R) k, which is a measure of the gravitational force acting

on the worldsheet of the ring due to the centre Myers-Perry black hole. The figure on the

r.h.s. exhibits the strength of the gravitational field acting on the ring due to the centre

black hole for three different values of the rotation parameter a. For values of R & 1,

the gravitational field strength increases with increasing rotation parameter. However, for

values R . 1 this is not necessarily the case and in fact for a = 1/10 the gravitational

field strength is higher than for a = 1/2. This leaves an imprint in the ring velocity k. In

the ‘-’ branch, due to the counter-clockwise rotation of the ring, the speed of light (k = 0)

is approached for higher values of R compared to the ‘+’ branch as in the previous case

of a = b = 1/2. However, since in the ‘-’ branch these values of R are such that R & 1,

the higher the rotation parameter, the higher the velocity of the ring must be for a given

value of the radius. This is in contrast with the ‘+’ branch for which the speed of light

is approached for lower values of R. Since this happens for R . 1, the ring rotates with

higher velocity for a given value of the radius for a = 1/10 than for a = 1/2.

The condition γ = 0 dictates the minimum radius that can be approached in the ‘+’

branch and gives R = r+, which is when the ring is placed at the horizon (3.13) and the

solution is not valid. This, however, implies that γ has the same zero for a = 1/10 and

a = 9/10 and explains why the minimum radius in the ‘+’ branch is the same for these

two values of the rotation parameter.
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3.2.4 Validity analysis

We have presented above the solution space for black saturns but have not inquired about

its regime of validity. The non-trivial scales in (2.17) are those associated with the back-

ground curvature, spin and bending deformations. From the scale associated with bending

deformations we find that we must have

Ω̂ℓ ≫ 1 , (3.21)

where ℓ ≡ min(R,m). The two background curvature scales in (2.17) require (3.21) with

ℓ = m. Evaluating the scale associated with spin deformations

|uaωa|−1 = k
(b2 +R2)2

bm2(1− aΩ)
, (3.22)

leads to Ω̂m ≫ 1 for R → r+, which is guaranteed by (3.21).

The validity condition (2.20) requires the two horizons to be sufficiently far apart,

therefore we evaluate the ratio |(R − r0) − r+|/r0. Even for distances very close to the

centre black hole R ∼ r+ one can satisfy the requirement r0 ≪ d in the ‘+’ branch as long

as Ω̂m ≫ √
a, which is guaranteed by (3.21). Note that no such requirement is imposed

in the ‘-’ branch, as the ring velocity reaches the speed of light for larger ring radii. Given

these considerations, we identify the small perturbative parameter ε ≡ (Ω̂m)−1 ∼ r0/m.

3.2.5 The spin-orbit coupling

We now briefly study the effect of considering the coupling to the spin connection in the

free energy (2.10). Using (3.22), the free energy can be written as

F [Ω̂,Ω, R, gµν ]|T=0 =
1

4Ω̂G

∫

Bp

√
|γ|k

(
1− 2εb

(1 +m−2)
(1− aΩ)

)
. (3.23)

Clearly, if the background spacetime is not rotating b = 0, the spin-orbit coupling vanishes.

As mentioned in section 2.5, the corrections appearing in the effective free energy (2.10)

for n ≤ 2 may be subleading compared to backreaction corrections. In the present case,

backreaction corrections will enter at the same order as the correction due to spin-orbit

effects. Therefore, while we briefly study the effect of such coupling in this section, one

cannot trust this to be the full result at order O(ε).

First note that due to (3.17), the free energy (3.23) is invariant under the shifts a → −a

and Ω → −Ω. Therefore one is free to take a > 0 without loss of generality. This means

that the four regions introduced above collapse into two. In addition, since we have chosen

Ω̂ > 0, the free energy (3.23) is not invariant under the shift b → −b, leading to two

different regions of solution space depending on the sign of b. We can solve the equilibrium

condition that arises from varying (3.23) with respect to R (i.e. (2.11)) by making the

perturbative ansatz

Ω = Ω0 + ε Ω1 , (3.24)
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where for simplicity we have chosen a = b = 1/2, for which Ω0 is the zeroth order re-

sult (3.18). Using this we may determine Ω1 in the ‘+’ branch to be

Ω1R =
2
√
2

8 + 25m2
m2 +O

(
m3

)
, (3.25)

for small m. In this region for which b > 0, the angular velocity increases due to the

spin-orbit coupling. However, this result is only part of the full first order correction to

the angular velocity of the ring.

3.3 Extremal di-rings

Di-rings are black hole solutions with two concentric disconnected ring horizons with topol-

ogy
(
S
1 × S

2
)
∪
(
S
1 × S

2
)
[7, 8]. These analytic solutions have finite temperature and no

regular zero temperature limit. Each of the rings is rotating only along the S
1 direction.

On the other hand, extremal di-rings can be considered by placing a ring geometry around

an extremal doubly-spinning black ring. The Pomeransky-Sen’kov solution [4] has metric7

ds2 = −H(y, x)

H(x, y)
(dt+ ω̂(x, y))2 − F (x, y)

H(y, x)
dχ2 − 2

J(x, y)

H(y, x)
dχdψ +

F (y, x)

H(y, x)
dψ2

+
R2

◦H(x, y)

(x− y)2(1− ν)2

(
dx2

G(x)
− dy2

G(y)

)
,

(3.26)

where the function G(y) = (1− y2)(1+λy+νy2) determines the locations of the inner and

outer horizons and the coordinate y has the range −∞ < y < −1. The parameters λ, ν

are dimensionless while R◦ is a dimensionful parameter determining the radius of the ring.

We are interested in the extremal limit for which λ = 2
√
ν with 0 < ν < 1. In this case the

extremal horizon is located at yh = −ν−
1
2 and the remaining functions introduced in (3.26)

are defined in [4]. Using the thermodynamic properties of the Pomeransky-Sen’kov solution

obtained in [9], one observes that at extremality λ = 2
√
ν both the angular momenta of

the extremal doubly-spinning black ring satisfy Jψ, Jχ > 0 while the angular velocities read

Ωψ =
1

2
√
2R◦

(
(1−√

ν)(1 + ν)

ν +
√
ν

)
, Ωχ =

1√
2R◦

(
1−√

ν

1 +
√
ν

)
, (3.27)

and satisfy Ωψ,Ωχ > 0. This implies that the solution space of di-rings is comparatively

simpler than the case of the black saturn.

3.3.1 Di-ring embedding

In order to better understand how to embed a second (outer) extremal ring around the

(inner) ring geometry (3.26) it is useful to consider a change of coordinates that makes the

metric (3.26) manifestly asymptotically flat at large distances away from the ring horizon.

This can be accomplished by performing the coordinate transformation [38]

x = −1 +
2R2

◦
r2

1 + ν − λ

1− ν
cos2 θ , y = −1− 2R2

◦
r2

1 + ν − λ

1− ν
sin2 θ , (3.28)

7In order to match the conventions of [4] one must relabel ω̂(x, y) → Ω, χ → φ, R2
◦
→ 2k2 and change

Minkowski metric sign conventions to ηµν = Diag(+1,−1,−1,−1,−1).
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such that R◦
√
(1 + ν − λ)/(1− ν) ≤ r < ∞ and 0 ≤ θ ≤ π. In this case, asymptotic

infinity is reached when r → ∞ and the metric (3.26) becomes

ds2 ≈ −dt2 + dr2 + r2
(
dθ2 + cos2 θdψ2 + sin2 θdχ2

)
. (3.29)

In the background (3.26) but with coordinates (x, y) → (r, θ) we want to place a concentric

ring rotating along the χ direction. This can be done by setting θ = π/2 and r = R which

in turn leads to8

x = −1 , y = yR = −1− 2R2
◦

R2

1 + ν − 2
√
ν

1− ν
, (3.30)

and choosing the embedding coordinates t = τ , χ = φ. The constant yR lies in the interval

yh < yR < −1. Introducing this into (3.26) leads to the induced metric

ds2 = −H(yR,−1)

H(−1, yR)
(dτ + ω̂(−1, yR))

2 − F (−1, yR)

H(yR,−1)
dφ2 . (3.31)

The functions H(−1, yR), H(yR,−1), F (−1, yR) and the one form ω̂(−1, yR) are given by

H(−1,yR)=−ν2+4ν+4
√
ν
(
ν2y2R−1

)
−ν(ν(ν+4)−1)y2R+1 ,

H(yR,−1)=−ν2+4ν+4ν3/2
(
y2R−1

)
−ν(ν(ν+4)−1)y2R−4

√
ν
(
ν2−1

)
yR+1 ,

F (−1,yR)=−R2
◦ (
√
ν−1)

4
(yR−1)(

√
νyR+1)

2

yR+1
,

ω̂(−1,yR)=−4R◦
√
(ν−1)2

√
ν(yR+1)

(
3
√
ν+ν3/2yR+3νyR+1

)
√
2(
√
ν−1)

2
u(ν,yR)

dφ,

u(ν,yR)=
√
ν
(
ν+5

√
ν+

(
ν3/2+ν2+5ν+

√
ν
)
y2R+4

(√
ν+1

)
(ν+1)yR+1

)
+1 .

(3.32)

The worldvolume and transverse Killing vector fields are taken to be of the form (3.3).

The modulus of the worldvolume Killing vector field and the determinant of the induced

metric read

k2 = −F (−1, yR)H(−1, yR)Ω
2 +H(yR,−1)2 (1 + ω̂(−1, yR)Ω)

2

H(−1, yR)H(yR,−1)
, γ = −F (−1, yR)

H(−1, yR)
.

(3.33)

We will now examine the space of possible solutions.

3.3.2 Solution space

Introducing (3.33) into the free energy (2.10), ignoring higher order corrections, and varying

it with respect to R leads to the equation for mechanical equilibrium. This equation admits

two branches of solutions as in the case of the black saturn. The ‘+’ branch is rotating

in the same direction along the S
1 as the centre black ring while the ‘-’ is rotating in the

counter-clockwise direction. These solutions exhibit a cumbersome relation between the

8The fact that one must set x = −1 and y = constant can be understood directly by working with (x, y)

coordinates since the geometry of such cross sections are circles in the ψ plane of rotation [39].

– 17 –



J
H
E
P
0
3
(
2
0
1
8
)
0
9
9

Ω

R

Figure 3. Ω as a function of R in units R◦ = 1. The upper thick curves are the ‘+’ branch of

solutions rotating in the same direction as the centre black ring while the lower ‘-’ branch of dashed

curves is rotating in the opposite direction. These curves represent three values of ν: ν = 1/3 (red),

ν = 1/2 (black) and ν = 2/3 (blue).

angular velocity and the ring radius R but can nevertheless be determined analytically.

For clarity of presentation, below we present the analytic result for small R◦ ≡ R◦/R

Ω = ± 1√
2R

(
1 +

2
√
ν − 8ν − 2ν2/3 + ν2 − 1

2(1− ν)2
R2

◦ +O
(
R4

◦
)
)

. (3.34)

The zeroth order behaviour is the expected behaviour of an isolated ring horizon in flat

space time, i.e. (3.5). The two branches have the same behaviour (modulo a minus sign) at

small R◦ but this does not continue to be the case once further corrections are considered.

In figure 3 we show the behaviour of the angular velocity as a function of R, which

is valid for Ω̂ℓ ≫ 1 with ℓ ≡ min(R,R◦). As the ring radius R is increased, its angular

velocity decreases. This is the same behaviour as found for all ring geometries considered

previously and it is rooted in the fact that as the ring size R increases, the gravitational

field due to the inner black ring decreases in strength. The behaviour of the solution space

is qualitatively the same as in the region Ωψ,Ωχ > 0 and 0 < a,b < 1 of the black saturn

solution. The curves terminate at values of R where the ring velocity k reaches the speed

of light, which happens when the outer ring sits at the horizon of the inner ring and the

solution breaks down. In the ‘+’ branch the minimum radius decreases with increasing ν

while in the ‘-’ branch the opposite behaviour is observed. This is due to the fact that the

angular momentum Jψ of the centre black ring increases with increasing ν. Furthermore,

no static solutions are possible.

3.4 Extremal bi-rings

An analytic solution for non-extremal bi-rings was obtained in [9, 10] and has topology(
S
1 × S

2
)
∪
(
S
1 × S

2
)
. Contrary to di-rings, it consists of two non-concentric rings in

which the S
1 direction of each ring lies on two different orthogonal planes. The analytic

bi-ring solution has non-zero angular momentum only along each of the S
1 directions.

Here we present evidence for the existence of extremal bi-ring configurations with angular

momentum also in the S
2.
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3.4.1 Bi-ring embedding

In order to construct extremal bi-ring solutions, one embeds the ring geometry in the

background (3.26) in an orthogonal plane to the S
1 of the centre black ring. This can be

done by using the (r, θ) coordinates (3.28) and choosing θ = 0 and r = R such that

x = xR = −1 +
2R2

◦
R2

1 + ν − 2
√
ν

1− ν
, y = −1 , t = τ , ψ = φ . (3.35)

This choice of embedding map leads to the induced metric and worldvolume Killing

vector field

ds2 = −H(−1, xR)

H(xR,−1)
(dτ + ω̂(xR,−1))2 +

F (−1, xR)

H(−1, xR)
dφ2 , ka ∂a = ∂τ +Ω∂φ , (3.36)

while the transverse Killing vector field is now aligned with the χ axis such that k⊥
µ ∂µ=∂χ.

The modulus of the surface Killing vector and the determinant of the induced metric read

k2 =
F (−1, xR)H(xR,−1)Ω2 −H(−1, xR)

2(1 + ω̂(xR,−1)Ω)2

H(−1, xR)H(xR,−1)
, γ = −F (−1, xR)

H(xR,−1)
.

(3.37)

The functions H(−1, xR), H(xR,−1) and F (−1, xR) are given by (3.32) with the replace-

ment yR → xR while the one form ω̂(xR,−1) reads

ω̂(xR,−1) =
4R◦

√
(ν − 1)2ν

(
x2R − 1

)
√
2 (

√
ν − 1)

2 (
ν + 2

√
ν − 2ν3/2x2R + ν2x2R − νx2R − 1

)dψ . (3.38)

With this in hand we can now look for possible extremal bi-ring configurations.

3.4.2 Solution space

The solution space of bi-rings is qualitatively the same as the case of di-rings and it is

also valid for Ω̂ℓ ≫ 1 with ℓ ≡ min(R,R◦). In fact, for small R◦ the angular velocity

has a similar expansion (3.34) in powers of R◦ but with a qualitative difference: the first

correction of order O
(
R2

◦
)
has the opposite sign. In particular, the branch of solutions

that is rotating in the clockwise direction has the following expansion at small R◦

Ω =
1√
2R

(
1± 2

√
ν − 8ν − 2ν2/3 ± ν2 − 1

2(1− ν)2
R2

◦ +O
(
R4

◦
)
)

, (3.39)

where the ‘+’ sign denotes the di-ring solution and the ‘-’ sign the bi-ring solution. The

behaviour of the bi-ring solution for arbitrary R◦ is shown in figure 4 and contrasted with

the di-ring solution. At large distances away from the centre black ring the solution reduces

to the flat space case (3.5), as expected. From eq. (3.39) we see that bi-rings are rotating

faster than di-rings for small R◦, since the function multiplying the factor R2
◦ in eq. (3.39)

is always negative for any ν. From figure 4 we see that this continues to be the case and

becomes quantitively different for larger values of R◦. This is because of the fact that the

centre black ring has Jψ < Jχ for any given value of R. For other values of ν, the solution

space exhibits a similar behaviour as that presented in figure 3.
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Figure 4. Ω as a function of R in units R◦ = 1 for ν = 1/2. The black curves describe the di-ring

solution of the previous section while the grey cruves describe the bi-ring solution. The thick curves

represent ‘+’ branch while the dashed curves represent the ‘-’ branch.

3.5 Phase diagram of extremal black holes in flat space

We now look at the phase diagram of extremal black holes in D = 5 vacuum Einstein

gravity. In general, the phase diagram will be quite complex but it is possible to consider

the simplest case, analogous to [40], where the extremal solutions are in thermodynamic

equilibrium. This implies that the angular velocity of each horizon must be equal, i.e.

Ωχ = Ω , Ωψ = Ω̂ , (3.40)

since the temperature at each horizon vanishes. Using the thermodynamic formulae of

section 2.6, taking into account the additional binding energy of the outermost horizon,

we can solve numerically for the condition (3.40). The phase diagram is presented in the

dimensionless variables introduced in [5]

aH =
3

16

√
3

π

AT
H

(GMT )3/2
, jχ =

√
27π

32

JT
χ

(GMT )3/2
, jψ =

√
27π

32

JT
ψ

(GMT )3/2
. (3.41)

It can be explicitly verified that, in the approximation scheme considered throughout this

paper, the black saturn solution of section 3.2 and the bi-ring solution of section 3.4 do

not exhibit solutions with (3.40). In the black saturn case, note that we need to require

Ω̂m ≫ 1 and since we have identified Ω̂ = 1/m by virtue of eq. (3.14), this requirement

cannot be satisfied. In addition, the equivalence Ω̂ = 1/m only holds when the ring horizon

coincides with the Myers-Perry horizon for which the solution breaks down. In the bi-ring

case, solutions can be found but the requirement Ω̂R ≫ 1 cannot be satisfied given that

we have identified Ω̂ = Ωχ where Ωχ is given by (3.27). The di-ring solution of section 3.3,

however, does admit valid solutions within this approximation, as shown in figure 5.

In figure 5 we display the behaviour of phase space in thermodynamic equilibrium

in both rotation planes for the exact extremal Myers-Perry black hole, the exact extremal

doubly-spinning black ring as well as the approximate extremal doubly-spinning black rings

of section 3.1 and the extremal di-rings of section 3.3. From figure 5 we see that the curve

of the approximate extremal doubly-spinning black ring is in good agreement with the

exact curve up to values of Ω̂R ∼ 0.1 in the (aH , jχ) diagram. In the (aH , jψ) diagram,
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Figure 5. The l.h.s. shows the reduced area aH as a function of the reduced angular momentum

jχ while the r.h.s. shows as a function of jψ. The grey thick line represents the exact extremal

Myers-Perry black hole, the grey dotted line the exact extremal doubly-spinning back ring while

the black dotted line represents the approximate doubly-spinning black ring curve using (3.6) and

the black line is the extremal di-ring of section 3.3.

the curves are almost superimposed for all values of Ω̂R. This is because, as noted in

section 3.1, the mass and angular momentum jψ do not receive corrections in Ω̂R. The

rest of the phase space has the expected behaviour, where the di-ring solution has lower

entropy in the (jχ, aH) diagram, analogous to the finite temperature case [40]. It should

be noted that, as mentioned in section 3.3, the approximation is valid if Ω̂ℓ ≫ 1 with

ℓ = min (R,R◦). Since we have identified Ω̂ with Ωψ in (3.27), we must require

1

2
√
2

(
(1−√

ν)(1 + ν)

ν +
√
ν

)
≫ 1 . (3.42)

This implies that the particular case of thermal equilibrium is only valid for 0 < ν . 1/1000.

In turn, this implies that we should only trust the behaviour of jχ for di-rings as presented

in figure 5 for jχ & 1.2 and similarly only for jψ . 4/100.

The condition for thermodynamic equilibrium (3.40) eliminates the two-parameter

degeneracy of the solutions constructed here and this is why, once this condition is imple-

mented, the phase diagram for the di-ring solution, as shown in figure 5, consists of a single

curve. In general, the solutions constructed here trace out a plane in phase space.

In figure 6 we show different curves, for given values of ν or rotation parameters a, b,

for both branches of solutions. The solutions constructed above require
(
Ω̂R◦, Ω̂m

)
≫ 1

as well as Ω̂ℓ ≫ 1 for ℓ = min (R◦, R) or ℓ = min (m,R). In the phase diagram of figure 6

we have kept Ω̂R◦ = Ω̂m = 10 and Ω̂R & 100 as not to extend the curves beyond their

regime of validity.

The outermost horizon of all the novel solutions with disconnected horizons presented

here is ultraspinning in the χ direction and has finite rotation in the transverse ψ direction,

except the bi-ring solution which has finite rotation in the χ direction and is ultraspinning

in the ψ direction. It is therefore expected that the angular momentum of most of these

solutions is unbounded in the χ direction and bounded in the ψ direction due to the

extremal bound of the Kerr string. Indeed this is the case, as can be seen in both plots in

figure 6. On the other hand, the angular momentum of the bi-ring solution is unbounded in
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Figure 6. On the l.h.s. it is shown the reduced area aH as a function of the reduced angular

momentum jχ while on the r.h.s. it is shown as a function of jψ. The grey line represents the exact

extremal Myers-Perry black hole while the grey dotted line the exact extremal doubly-spinning back

ring. The remaining thick curves represent the ‘+’ branch of the different solutions while the dashed

curves represent the ‘-’ branches. The black lines represent the di-ring with R◦ = 1, Ω̂ = 10 and

ν = 1/2 and the red lines the bi-ring solution for the same values of the parameters. The blue lines

represent the black saturn solution for equal rotation parameters and m = 1, Ω̂ = 10 with a = 1/2.

the ψ direction and bounded in the χ direction. The boundedness of the bi-ring solution in

the χ direction is not only explained by the extremal bound on the Kerr string but also by

the fact that the mass of the outer ring grows relatively fast with the angular momentum

compared to the angular momentum of the inner ring horizon. The bi-ring solution includes

cases in which the inner ring is ultraspinning in the χ direction, even though the outer ring

is not. If we would define a dimensionless quantity jχ associated with the inner horizon,

jχ would be unbounded. However, taking into account the mass and angular momentum

of the outer ring, the total angular momentum is not bounded in the χ direction. It is also

clear from figure 6 that the di-ring and the bi-ring solution show qualitatively the same

features but in the opposite rotation planes.

4 Extremal black holes in D ≥ 6

In this section we look at certain classes of extremal black holes in D ≥ 6. As mentioned

in section 2, the extremal version of the isolated horizons found in D ≥ 6 using non-

spinning branes [14, 20, 21] are regular solutions to (2.16), provided there are no symmetry

restrictions. This implies that, for instance, extremal versions of the black cylinders and

black odd-spheres of [14] yield regular horizons. In this section we analyse the case of

a configuration representing a single horizon, namely that corresponding to the extremal

Myers-Perry black hole for which comparison with exact analytic results can be made. We

will show that the extremal Myers-Perry black hole with one finite angular momentum

and several ultraspinning ones can be captured by the effective theory introduced here. In

addition, we provide a generalisation of the black saturn solution of section 3.2 in which an

horizon with topology S
3 × S

2 is wrapped around the S
5 horizon of the Myers-Perry black

hole in D = 7.
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4.1 Extremal Myers-Perry black holes

In this section we construct extremal Myers-Perry black holes with one finite angular

momenta and compare it against the exact solution finding complete agreement. We begin

with the D = 6 case where the black hole only carries two angular momenta. We then

move on to the general case of arbitrary even dimension.

4.1.1 Extremal Myers-Perry black hole in D = 6

Consider Minkowski space in D = 6 written in the form

ds2 = −dt2 + dr21 + r21dχ
2 + dr22 + r22dψ

2 + dx2 , (4.1)

where 0 ≤ r1, r2 < ∞ and 0 ≤ χ, ψ ≤ 2π. We now embed a disc geometry by choosing the

embedding map

t = τ , r1 = ρ , χ = φ , r2 = 0 , x = 0 . (4.2)

Setting the disc to rotate with angular velocity Ω along the χ direction and with transverse

angular velocity Ω̂ along the ψ direction, the induced metric and Killing vector fields become

ds2 = −dτ2 + dρ2 + ρ2dφ2 , ka ∂a = ∂τ +Ω∂φ , k
µ
⊥∂µ = Ω̂∂ψ . (4.3)

This embedding is a trivial solution of (2.11) since the extrinsic curvature vanishes and the

background space is flat. The non-trivial feature of this embedding is the existence of its

boundary located at ρ = ρ+ for which k2(ρ+) = 1− Ω2ρ2+ = 0 such that

ρ+ =
1

Ω
. (4.4)

As mentioned in section 2.5, configurations with boundaries deserve special attention, as

to describe the physics accurately at the boundary one must employ a boundary expansion

due to (2.19). In order to explicitly see this, we consider the length scales associated with

higher order corrections (2.17). The only nontrivial scales are those associated with the

acceleration and vorticity of the fluid. We evaluate

|abab|−
1
2 =

k2

ρΩ2
, |ωabω

ab|− 1
2 =

k2

√
2Ω

. (4.5)

Both the scales imply that near the boundary for which k = 0, the requirement (2.17) can-

not be satisfied and the approximation breaks down, while near the axis of rotation (ρ = 0),

the scale associated with vorticity implies that Ω/Ω̂ ≪ 1. In general, one must require

Ω

Ω̂
≪ k , (4.6)

over the disc. This implies that the disc must be rotating faster in the transverse direction

near the boundary in order to satisfy (4.6).

Keeping this in mind, we introduce the cut-off ǫ and integrate the free energy (2.10)

in the interval 0 ≤ ρ ≤ (ρ+ − ǫ) for small ǫ. We find the on-shell free energy

F [Ω, Ω̂]|T=0 =
π

6GΩ̂Ω2
+O

(
ǫ
3
2

)
. (4.7)
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Even though we have introduced the cut-off ǫ, the on-shell free energy is independent of

it at leading order in a boundary expansion. This is because the majority of the mass is

concentrated in the centre of the disc. Using the free energy, together with the formulae of

section 2.6, we can obtain the remaining thermodynamic properties, including the mass,

angular momenta and entropy

M =
2π

3GΩ̂Ω2
, Jχ =

π

3GΩ̂Ω3
, Jψ =

π

6GΩ̂2Ω2
, S =

π2

3GΩ̂2Ω2
, T = 0 . (4.8)

Before comparing these results with the exact solution, we will generalise them to any

even D.

4.1.2 Extremal Myers-Perry black hole in even D ≥ 6

We now generalise the above results to include Myers-Perry black holes with an arbitrary

number l of ultraspins in even D dimensions. We write D-dimensional Minkowski space as

ds2 = −dt2 +
l∑

i=1

(
dr2i + r2i dχ

2
i

)
+ dr2l+1 + r2l+1dψ

2 + dx2 , (4.9)

with D = 2l + 4. The fact that D is always even supervenes on the fact that the effective

theory employed here is only valid for n = 1. In this background we embed a 2l+1 ellipsoid

rotating along the l angular directions χi and transverse to it in the ψ direction by choosing

the embedding map

t = τ , ri = ρi , χi = φi , rl+1 = 0 , x = 0 , (4.10)

giving rise to the induced metric and Killing vector fields

ds2 = −dτ2 +
∑

l

(
dρ2i + ρ2i dφ

2
i

)
, ka ∂a = ∂τ +

∑

l

Ω(l)∂φ(l)
, k

µ
⊥∂µ = Ω̂∂ψ . (4.11)

The boundary of the ellipsoid is now located at
∑l

i=1Ω
2
(l)ρ

2
(l) = 0, where, by evaluating the

scales (2.17), the approximation is expected to break down. In general, (2.17) requires that
√(∑l

i=1Ω
2
(l)

)

Ω̂
≪ k . (4.12)

As in the D = 6 case, introducing a cut-off ǫ does not change the thermodynamics at

zeroth order in a boundary expansion. We thus compute the on-shell free energy

F [Ω(l), Ω̂]|T=0 =
1

8Ω̂G

π(l+ 1
2
)

Γ
(
l + 3

2

)
l∏

i=1

Ω−2
(l) +O

(
ǫ
3
2

)
. (4.13)

From here we determine the remaining thermodynamic properties

M =
(l + 1)

4Ω̂G

π(l+ 1
2
)

Γ
(
l + 3

2

)
l∏

i=1

Ω−2
(l) , Ji =

1

4Ω̂ΩiG

π(l+ 1
2
)

Γ
(
l + 3

2

)
l∏

i=1

Ω−2
(l) , (4.14)

Ji =
1

4Ω̂ΩiG

π(l+ 1
2
)

Γ
(
l + 3

2

)
l∏

i=1

Ω−2
(l) , S =

π

4Ω̂2G

π(l+ 1
2
)

Γ
(
l + 3

2

)
l∏

i=1

Ω−2
(l) , T = 0 . (4.15)
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4.1.3 Comparison with the extremal Myers-Perry solution

In order to compare the thermodynamics above with the exact extremal Myers-Perry so-

lution in even D, we follow the conventions of [41].9 The Myers-Perry black hole in even

D dimensions is described by N planes of rotation such that D = 2N + 2. We single out

one plane of rotation by redefining N such that N = l + 1. Each plane of rotation has

an associated rotation parameter ai = 1, . . . , l + 1. We take the first l parameters to be

ultraspinning such that ai ≫ r+ , i = 1, . . . , l where r+ is the outer horizon radius and

assumed to be finite [3]. The last rotation parameter al+1 remains finite. In this case, there

exists an inner and outer horizon r± such that

r± =
µ±

√
µ2 − a2l+1

(∏l
i=1 a

2
i

)2

∏l
i=1 a

2
i

. (4.16)

The Myers-Perry black hole is extremal if the two horizons coincide, this implies that

µ = al+1

l∏

i=1

a2i , r+ = al+1 , (4.17)

and hence the angular velocities read

Ωi =
1

ai
, i = 1, . . . , l , Ωl+1 =

1

2al+1
. (4.18)

In order to compare it with the thermodynamic properties obtained above it is sufficient to

verify that the free energy and the entropy match, since from the free energy the remaining

properties can be obtained. Given the limit above, the free energy and entropy in [41] read10

F|T=0 =
1

8Ωl+1G

π(l+ 1
2
)

Γ
(
l + 3

2

)
l∏

i=1

Ω−2
i , S|T=0 =

π

4Ω2
l+1G

π(l+ 1
2
)

Γ
(
l + 3

2

)
l∏

i=1

Ω−2
i . (4.19)

Therefore, we have perfect agreement with (4.13) and (4.15) provided we identify Ωi = Ω(l),

i = 1, . . . , l and Ωl+1 = Ω̂. One may compare the approximate solution in D = 6 given

by (4.8) with the exact extremal Myers-Perry solution. Using the thermodynamic proper-

ties of the Myers-Perry solution given in [41] and reduced quantities analogous to (3.40) as

in [5], the phase diagram can be depicted as in figure 7. We see that the Myers-Perry solu-

tion obtained using blackfold methods approximates well the exact solution for jχ & 1.5 and

for jψ . 0.5. It is clear that the blackfold approximation works better than expected given

that the regime of validity (4.12) indicates that one should only expect good agreement if

jχ ≫ 1. This gives further evidence for the correctness of the effective theory employed here.

4.2 Extremal higher-dimensional black saturns

In this section we construct a generalisation of the black saturn solution of section 3.2 for

which an horizon with
(
S
3 × S

2
)
is placed around a centre black hole and we briefly analyse

9We have exchanged m appearing in [41] with µ appearing here.
10Here F|T=0 = TID where ID is the Euclidean action in [41].
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Figure 7. The reduced aH as a function of the reduced angular momentum j. The thick grey

line represents the exact extremal Myers-Perry black hole in D = 6, which exhibits the same

behaviour, due to spherical symmetry, in both rotation planes. The dashed grey line is the angular

momentum jχ of the approximate extremal Myers-Perry (4.8) while the black dashed line is the

angular momentum jψ.

its solution space. Further investigation, including their finite temperature versions, will

be carried out in [34]. The complete solution has horizon topology S
5 ∪

(
S
3 × S

2
)
. In

order to do so, we take a Myers-Perry black hole in D = 7 as the background and for

simplicity we focus on the case in which all three rotation parameters are equal to each

other ai = a , i = 1, 2, 3. The metric of the Myers-Perry black hole can be written as

ds2 = −dt2 +
3∑

i=1

(
r2 + a2

) (
dµ2

i + µ2
i dχ

2
i

)
+

m4r2

ΠF

(
dt− a

3∑

i=1

µ2
i dχi

)2

+
ΠF

Π− r2m4
dr2 ,

(4.20)

where we have introduced the functions

F (r, µi) = 1− a2

r2 + a2
, Π(r) =

(
r2 + a2

)3
. (4.21)

The coordinate r runs lies in the interval r+ < r < ∞, where r+ is the location of the

horizon. The coordinates χi are azimuthal angles 0 ≤ χi ≤ 2π while the direction cosines

lie in the interval −1 ≤ µi ≤ 1 and satisfy the constraint µ2
1 + µ2

2 + µ2
3 = 1.

The horizon r+ is given by the outermost real root of Π(r+)−m4r2+ = 0. At extremality,

this implies that

r+ =
a√
2
, m =

33/4√
2
a , (4.22)

in which case all the angular velocities are rotating clockwise with magnitude

Ωχi
=

√
2

31/4m
. (4.23)

We will now place a 3 + 1-dimensional submanifold with transverse spin rotating in this

background.

4.2.1 Embedding and solution space

We embedd a 4-dimensional submanifold in the background (4.20) by choosing the embed-

ding map

t = τ , µ1 = sin θ , µ3 = 0 , χ1 = φ1 , χ2 = φ2 , r = R , (4.24)
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Ω

R

Figure 8. Ω as a function of R in units m = 1. The black line is the ‘+’ branch while the dashed

line is the ‘-’ branch.

for which 0 ≤ θ ≤ π, and we set it to rotate with equal angular velocity Ω along the χ1, χ2 di-

rections and will transverse angular velocity Ω̂ in the χ3 direction. The induced metric reads

ds2 = −dτ2 + (R2 + a2)
(
dθ2 + cos2 θdφ2

1 + sin2 θdφ2
2

)

+
m4R2

Π(R)F (R, θ)

(
dτ − a cos2 θdφi − a sin2 θdφ2

)2
,

(4.25)

while the Killing vector fields take the form

ka ∂a = ∂τ +Ω(∂φ1 + ∂φ2) , k
µ
⊥∂µ = Ω̂∂χ3 . (4.26)

By evaluating γ,k, plugging it into the free energy (2.10) and varying it with respect to

R, one obtains the equilibrium condition for Ω. It can be solved exactly and it exhibits a

similar behaviour as in the case of black saturns in D = 5 with equal rotation parameters

of section 3.2.2. It is composed of two branches, for clockwise and anti-clockwise rotation.

For small m = m/R, the solution exhibits the behaviour

Ω = Ω0

(
1− m2

3
√
3
+O

(
m4

))
, Ω0 = ±

√
3

2R
. (4.27)

Here the zeroth order result Ω0 agrees with that of a (n, p) = (1, 3) odd-sphere in Minkowski

space as found in [14]. In figure 8 we exhibit the complete behaviour of Ω as a function

of R. The behaviour of Ω is very similar to that presented in figure 1. The ‘+’ branch

terminates at R = r+ while the ‘-’ branch terminates at a slightly higher value of R. The

approximation is valid when Ω̂ℓ ≫ 1 for ℓ = min (R,m) and Ω̂m ≫ 1 for lower values of R.

5 Concluding remarks

Using the blackfold effective theory, we have shown the existence of new extremal solutions

with disconnected horizons and reproduced existing ones. In particular, in D = 5 these

include extremal black saturns, di-rings and bi-rings, where each horizon that composes

these solutions has two independent angular momenta.

All the extremal solutions found here in D ≥ 6 are non-static, agreeing with the result

of [42] in vacuum Einstein gravity. In addition, the topology of all horizons in D = 5

encountered in this work is either S
3 or S

1 × S
2, thus agreeing with the extremal near-

horizon geometry classification of [43, 44] and the uniqueness theorems of [45, 46]. It
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would be interesting to obtain extremal versions of the black holes found in [20, 36, 47] in

(Anti)-de Sitter spacetime and to check whether they also agree with [42, 48].

In section 3.5, the phase diagram of D = 5 extremal black holes was analysed. It

was shown that imposing thermodynamic equilibrium as in [40] leads to the exclusion of

the black saturn and bi-ring solution. The fact that there are no solutions in thermal

equilibrium for the extremal black saturn and bi-rings does not necessarily mean that such

phases of thermal equilibrium do not exist for the complete solution. However, it does

mean that they will not have blackfold limits. This is somewhat surprising and it hints at

the fact that extremal disconnected horizons are quite constrained systems. Their finite

temperature counterparts are expected to exhibit such phases [34] and indeed they do at

least when only rotating in one of the rotation planes [40]. This will be further investigated

in a future publication [34].

The application of the effective theory presented here was restricted to solving the set

of constraint equations, which are a necessary condition for the existence of black hole

solutions. We have not constructed any explicit metrics. Showing that solving this set of

constraint equations is a necessary condition supervenes on a simple generalisation of the

arguments of [49] and will be spelled out in detail in [34]. Constructing the explicit metrics

requires the more evolved task of generalising [5] to Kerr branes. Nevertheless, we look

forward to completing such task.

The solutions constructed here were restricted to n = 1 which implied that only one of

black hole angular momenta is finite. To generalise these results to n > 1, it is necessary

to work with an effective theory of Myers-Perry branes with an arbitrary number of rota-

tion parameters. This effective theory is that of a multi-charged fluid. In a forthcoming

publication [34], we will introduce these effective theories and study some of their stability

properties including at extremality. Many new black holes with finite temperature will be

constructed and, in some cases, corrections to the effective theory, following [32, 33, 50, 51],

will be considered.

Making use of the classification of extremal near-horizon geometries, ref. [11] conjec-

tured the exact thermodynamic properties for a generalisation of the black ring solution of

section 3.1, namely, one for which the horizon topology is S1 × S
D−3. Using the blackfold

effective theory applied to Kerr branes, these solutions are not possible to construct. In-

stead, only solutions analogous to that surrounding the D = 7 Myers-Perry black hole in

section 4.2 can be constructed. These solutions, referred to as black odd-spheres in [14],

have topology S
D−4 × S

2. In order to construct the solutions of [11], one must use the

effective theory of Myers-Perry branes with several non-zero transverse spins.

An interesting generalisation of the work presented here is to consider Kerr-Newmann

branes, which, from the point of view of the effective theory (2.4), will carry transverse

spin as well as a magnetic moment in accordance with [52, 53]. Such effective theory allows

to find novel extremal black hole solutions with electric charge in Einstein-Maxwell theory,

including doubly-spinning charged black rings in D = 5.11 This direction will be pursued

in a future publication.

11In supergravity many new black hole solutions were found using the blackfold approach [54–57].
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