1,010 research outputs found

    Faktor-Faktor Yang Mempengaruhi Lama Kebuntingan Pada Sapi Hissar Sumbawa

    Full text link
    A study of factors affecting gestation period was made by statistically analyzing the data relating to 38 calvings of Hissar cattle in BPT & HMT Serading Sumbawa. The average length of gestation period was found to be 289.87 ± 6.42 for all calves, 289.38 ± 6.48 days for males dan 290.71 ± 6.24 for females. Females calves were carried 1.33 days longer than males, the difference, however, tended not to be significant. Calvings were distributed throughout the year, the percentage of calvings was lower (28.95%) during wet season than that of dry season (71.05%). The percentage of calvings both in males and females were found to be higher during dry than wet seasons. It is concluded, therefore, that sex does not appear to influence gestation period, while season of calving was found to be responsible in causing variation in the length of gestation period

    BrainPainter: A software for the visualisation of brain structures, biomarkers and associated pathological processes

    Get PDF
    We present BrainPainter, a software that automatically generates images of highlighted brain structures given a list of numbers corresponding to the output colours of each region. Compared to existing visualisation software (i.e. Freesurfer, SPM, 3D Slicer), BrainPainter has three key advantages: (1) it does not require the input data to be in a specialised format, allowing BrainPainter to be used in combination with any neuroimaging analysis tools, (2) it can visualise both cortical and subcortical structures and (3) it can be used to generate movies showing dynamic processes, e.g. propagation of pathology on the brain. We highlight three use cases where BrainPainter was used in existing neuroimaging studies: (1) visualisation of the degree of atrophy through interpolation along a user-defined gradient of colours, (2) visualisation of the progression of pathology in Alzheimer's disease as well as (3) visualisation of pathology in subcortical regions in Huntington's disease. Moreover, through the design of BrainPainter we demonstrate the possibility of using a powerful 3D computer graphics engine such as Blender to generate brain visualisations for the neuroscience community. Blender's capabilities, e.g. particle simulations, motion graphics, UV unwrapping, raster graphics editing, raytracing and illumination effects, open a wealth of possibilities for brain visualisation not available in current neuroimaging software. BrainPainter is customisable, easy to use, and can run straight from the web browser: https://brainpainter.csail.mit.edu , as well as from source-code packaged in a docker container: https://github.com/mrazvan22/brain-coloring . It can be used to visualise biomarker data from any brain imaging modality, or simply to highlight a particular brain structure for e.g. anatomy courses.Comment: Accepted at the MICCAI Multimodal Brain Imaging Analysis (MBIA) workshop, 201

    A Novel Single Nucleotide Polymorphism in Exon 4 of Insulin-Like Growth Factor-1 Associated with Production Traits in Bali Cattle

    Full text link
    Insulin-like growth factor-1 (IGF-1) is one of the gene candidates that can be used in selection strategy by using DNA markers (marker assisted selection). Gene candidate strategy is a molecular biology techniques to identify quantitative trait loci directly, with the assumption that genetic variation associated to quantitative trait variation. This study was designed to identify any new mutations in exon 4 that can cause the IGF-1 gene polymorphism and then affect the production traits on Bali cattle. Single nucleotide polymorphism (SNP) discovery was conducted by using the direct sequencing technique. Genetic variation of the genes candidate was identified by using PCR-RFLP technique. The results of this study indicate the presence of a new SNP in exon 4 of IGF-1 gene caused by the T/C transition, which can be identified using Rsa1 restriction enzyme. Genotypic polymorphism of IGF-1/Rsa1 has a significant influence on birth weight, weaning weight and average daily gain of Bali cattle. CC genotype had a birth weight rate, weaning weight and average daily gain of: 15.64±1.83; 83.15±9.00, and 0.439±0.07 respectively, higher than the TT and CT genotype. IGF-1/Rsa1 can be used as a genetic marker for selection of birth weight, weaning weight, and daily body weight gain

    Measurement of spray combustion processes

    Get PDF
    A free jet configuration was chosen for measuring noncombusting spray fields and hydrocarbon-air spray flames in an effort to develop computational models of the dynamic interaction between droplets and the gas phase and to verify and refine numerical models of the entire spray combustion process. The development of a spray combustion facility is described including techniques for laser measurements in spray combustion environments and methods for data acquisition, processing, displaying, and interpretation

    Optimizing mining rates under financial uncertainty in global mining complexes

    Get PDF
    AbstractThis paper presents a distributed and dynamic programming framework to the mining production rate target tracking of multiple metal mines under financial uncertainty. A single mine׳s target tracking is stated as a stochastic optimization problem and the solution is obtained by solving the dynamic program which gives the optimal production rate schedule of each mine as a Markovian feedback control on the price process. The global solution is distributed on multiple mines by a policy iteration method, and this iterative method is shown to provide the unique equilibrium among Markovian strategies. Numerical results confirm the efficacy of the proposed global method when compared to individual optimization of mining rate target tracking

    Energy-Efficient Heterogeneous Cellular Networks with Spectrum Underlay and Overlay Access

    Full text link
    In this paper, we provide joint subcarrier assignment and power allocation schemes for quality-of-service (QoS)-constrained energy-efficiency (EE) optimization in the downlink of an orthogonal frequency division multiple access (OFDMA)-based two-tier heterogeneous cellular network (HCN). Considering underlay transmission, where spectrum-efficiency (SE) is fully exploited, the EE solution involves tackling a complex mixed-combinatorial and non-convex optimization problem. With appropriate decomposition of the original problem and leveraging on the quasi-concavity of the EE function, we propose a dual-layer resource allocation approach and provide a complete solution using difference-of-two-concave-functions approximation, successive convex approximation, and gradient-search methods. On the other hand, the inherent inter-tier interference from spectrum underlay access may degrade EE particularly under dense small-cell deployment and large bandwidth utilization. We therefore develop a novel resource allocation approach based on the concepts of spectrum overlay access and resource efficiency (RE) (normalized EE-SE trade-off). Specifically, the optimization procedure is separated in this case such that the macro-cell optimal RE and corresponding bandwidth is first determined, then the EE of small-cells utilizing the remaining spectrum is maximized. Simulation results confirm the theoretical findings and demonstrate that the proposed resource allocation schemes can approach the optimal EE with each strategy being superior under certain system settings

    Estimation of Primordial Spectrum with post-WMAP 3 year data

    Full text link
    In this paper we implement an improved (error sensitive) Richardson-Lucy deconvolution algorithm on the measured angular power spectrum from the WMAP 3 year data to determine the primordial power spectrum assuming different points in the cosmological parameter space for a flat LCDM cosmological model. We also present the preliminary results of the cosmological parameter estimation by assuming a free form of the primordial spectrum, for a reasonably large volume of the parameter space. The recovered spectrum for a considerably large number of the points in the cosmological parameter space has a likelihood far better than a `best fit' power law spectrum up to \Delta \chi^2_{eff} \approx -30. We use Discrete Wavelet Transform (DWT) for smoothing the raw recovered spectrum from the binned data. The results obtained here reconfirm and sharpen the conclusion drawn from our previous analysis of the WMAP 1st year data. A sharp cut off around the horizon scale and a bump after the horizon scale seem to be a common feature for all of these reconstructed primordial spectra. We have shown that although the WMAP 3 year data prefers a lower value of matter density for a power law form of the primordial spectrum, for a free form of the spectrum, we can get a very good likelihood to the data for higher values of matter density. We have also shown that even a flat CDM model, allowing a free form of the primordial spectrum, can give a very high likelihood fit to the data. Theoretical interpretation of the results is open to the cosmology community. However, this work provides strong evidence that the data retains discriminatory power in the cosmological parameter space even when there is full freedom in choosing the primordial spectrum.Comment: 13 pages, 4 figures, uses Revtex4, new analysis and results, references added, matches version accepted to Phys. Rev.
    • …
    corecore