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a b s t r a c t

This paper presents a distributed and dynamic programming framework to the mining production rate
target tracking of multiple metal mines under financial uncertainty. A single mine's target tracking is
stated as a stochastic optimization problem and the solution is obtained by solving the dynamic program
which gives the optimal production rate schedule of each mine as a Markovian feedback control on the
price process. The global solution is distributed on multiple mines by a policy iteration method, and this
iterative method is shown to provide the unique equilibrium among Markovian strategies. Numerical
results confirm the efficacy of the proposed global method when compared to individual optimization of
mining rate target tracking.
& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

A mining complex is composed of multiple mines, material
types, and several processing streams including stockpiles. A
global optimization framework for a mining complex should take
into account the dynamics and mutual constraints of the overall
complex. In this paper, we investigate mining production rate
target tracking of multiple metal mines in a mining complex over
the life of operations from which life of mine schedules are
generated. It is important to maintain a steady mining rate during
the life of mine since moving mining equipment and relocating
personnel is costly. However, in changing market dynamics, the
trade-off between following the planned mining rate and cost of
rate change forms a dynamic stochastic optimization problem,
which is termed mining rate tracking problem.

Three fundamental properties affect mining rate planning in
a mining complex: metal uncertainty, financial uncertainty and
inter-dependence of mines in a mining complex. First, since the
metal content of each mining block is not known, the associated
financial value of a block is stochastic. Traditionally, to overcome
this stochasticity, scenario methodologies are applied (Ramazan
and Dimitrakopoulos, 2013; Boland et al., 2008; Meagher et al.,
2009), the cost function is assumed to be linear and stochastic

mixed integer programming (SIP) based solutions are adopted.
Since the number of mining blocks is usually very large, heuristic
approaches have been applied (Lamghari and Dimitrakopoulos,
2012). An alternative is to develop sequential models to form a
complete plan, as per Lerchs and Grossmann (1965) and Whittle
(1988). We take a similar approach here and extend this sequential
approach to multiple mines in a single mine complex with the
novelty that (i) it is dynamic programming based and (ii) it takes
global dependences into account in an iterative manner.

Secondly, the price of the metal is a stochastic process. Since
mining rate tracking is a horizon optimization problem and the
price is observed progressively on the horizon, this introduces
feedback controls to the tracking problem. Lastly, there are mutual
constraints that have to be addressed by all mines such as stock-
piles and processing destinations that are common parts of a
mining complex. Therefore, a global optimization framework is
needed.

Even though financial uncertainty has been addressed less than
geological uncertainty in the mining literature (Godoy, 2003), there
has been progress in the recent years. Simulation-based approaches
have been presented by Abdel Sabour and Dimitrakopoulos (2011),
and a methodology to quantify the effect of price uncertainty within
reserve estimates has been given by Evatt et al. (2012). A graph-
based parametric maximum flow algorithm for developing ultimate
pit limit and phase design under metal and financial uncertainty
has been presented by Asad and Dimitrakopoulos (2013).

The problem discussed herein may be seen as a sub-problem
under the larger problem named production scheduling of a
mining complex under financial uncertainty. Ideally, this problem
should be solved globally in a single stochastic mixed integer
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program. However, the computational complexity is insurmoun-
table. In the work presented here, a distributed approach rather
than a centralized framework is taken. The problem is divided
into four phases, the necessary and salient dependences between
the phases are established, and then solved iteratively. Phase 1 is
the mining pit limit calculation of each mine and phase 2 is the
calculation of individual mining production rate target functions
which includes identifying independent and dependent con-
straints. In phase 3, mining rate trackings are solved globally for
all mines considering financial uncertainty. Phase 4 includes the
calculation of individual production schedules considering metal
uncertainty. Note that metal uncertainties are independent of each
other and independent of the financial uncertainty, which allows
parallel computation in phase 4. It should be stressed that without
this iterative approach it would not be possible to employ
parallelization in the scheduling phase, and the resulting single
stochastic mixed integer program would have an enormous
number of variables and constraints, which necessarily would
lead to intractability. This paper proposes a solution to the phase
3 described above. The proposed framework provides a significant
reduction in computation of decision making in an environment
where every decision is dependent on volatile prices. Once the
extraction rates are calculated the production scheduling can be
done individually for each mine taking into account each mine's
individual geological uncertainties, which are in principle inde-
pendent of each other.

In this paper, an optimal control framework is developed to
address financial uncertainty and global optimization in mining
production rate tracking for multiple mines in a mining complex.
Note that, in previous work, receding control has been applied to mine
production scheduling by Goodwin et al. (2006) and Rojas et al. (2007)
in a deterministic framework. Herein a stochastic optimization frame-
work is presented where individual target tracking on the horizon is
shown to be in the class of Markovian feedback controls, where the
price process is progressively measured, but only the instantaneous
price is employed to calculate the mining rate. The stochastic proper-
ties of the price process are handled in a dynamic program. Since the
individual dynamic optimizations of the mines are coupled a dis-
tributed policy iteration method is provided, and it is shown that
successive iterations converge to a unique fixed point which repre-
sents the unique Nash equilibrium.

The assumptions below are made in the present work.

A1: The existence of a target extraction rate function is assumed
for each mine parameterized by the price process and the extrac-
tion rates of other mines, denoted as Ψ kðpt ; xtÞ; tZ0 where pt ; tZ0
is the price process and xt ; tZ0 denotes the average extraction
rate of all mines. The target extraction rate function is strictly
increasing in price and strictly decreasing in the average extraction
rate of all mines. Several other parameters can be injected into this
function such as the overall estimated value of the mining
complex, the relative complexity of the transportation for each
mine, etc. The key idea here is to group dependences into a single
dynamics function where dynamic optimization can be applied.
The determination of the structure of the target extraction rate
function precisely requires a sensitivity analysis with respect to
the selected parameters and is beyond the scope of the paper.

The mines are not independent; for instance, if all the mines
increase their extraction rates, even though mines respect their
individual constraints, the global constraints could be violated or
stockpile capacities that are commonly used could be exceeded.
It is to be noted that the results of the paper hold in the case when
A1 is generalized to a more general functional where (a) the
parameter set is finite and (b) Markovian property is not violated.
A1 has been established for notational brevity.

A2: It is assumed that the metal price follows a stochastic
differential equation (Schwartz, 1997) which is subject to Brow-
nian increments, nowhere differentiable, Markovian and given by

dpt ¼ f pðpt ;μÞdtþσðptÞdwt ; ð1Þ

where f pðp;μÞ is the drift and σðpÞ is the volatility, whereas w is a
standard Wiener process (Brownian motion).

The time evolution of the probability density function ζðt; ptÞ of
the metal price that is modeled through (1) is given by the Fokker–
Planck equation which in physics provides the evolution of the
probability density function of the velocity of a particle given by

∂tζðt; ptÞþ∂p½f pðpt ;μÞζðt;ptÞ��
1
2
∂2ppσðptÞ2ζðt; ptÞ ¼ 0; ð2Þ

where a closed form solution may exist depending on the proper-
ties of f p and σ. Since the time varying distribution of the metal
price is explicitly stated through a partial differential
equation (PDE), stochastic mining rate target tracking can be
simply formulated as a stochastic mixed integer program with
recourse. However, despite its simple model, the solution would
be hit by the curse of dimensionality in the uncountable and
unbounded state space, and it would be computationally intract-
able to provide Monte Carlo solutions even if the distribution (2) is
very roughly sampled. In this paper, optimal mining rate tracking
is solved via a dynamic program formulation solvable in closed
form; therefore the approach offers a significant complexity
advantage.

Classical optimization and control theory studies problems
with a single decision maker and offers tools and algorithms that
can guarantee a certain performance and robustness. Decentrali-
zation of a global system immediately poses new problems to be
solved such as those raised by the well-known Witsenhausen
counterexample (Witsenhausen, 1968), or the stability issues
which arise for systems subject to communication constraints
(Nair and Evans, 2004). Viewed from this perspective, attention is
needed for the utilization of parallelization. There are cases in
which an equilibrium may not exist where no unilateral deviations
are profitable. Even if an equilibrium exists, iterations of the
distributed sub-problems might not converge to this equilibrium.
In this paper it is shown that for the distributed mining rate target
tracking, there exists a unique equilibrium, where no unilateral
deviation is profitable, and a policy iteration method is shown to
converge to this equilibrium.

The remainder of this paper is organized as follows. In Section 2
the mathematical model is introduced, where each individual
optimization problem is formulated as a mining rate target
tracking problem. In Section 2.1, the dynamic program is solved
and the closed form solutions that generate the optimal mining
rate of each mine are presented. In Section 3 the distributed
algorithm is given and the convergence of the algorithm toward
the equilibrium is given, where profitable unilateral deviations do
not exist. In Section 4, the maximum likelihood method to
calibrate the stochastic price process parameters is briefly dis-
cussed and simulation results are provided. Conclusions follow.

2. Optimal target control

The mathematical model for the mining rate tracking optimi-
zation is introduced in this section. Each mine tries to track the
planned extraction trajectory in order to fulfill its planned sche-
dule. The optimization is computed on a horizon through a cost
function where both deviations from the target and change in the
rate of mining are penalized. Moreover, these plans are dependent
on the stochastic process pt ; tZ0; the price process.
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In the remaining of the paper, mine k is denoted as agent Ak

and K agent systems Ak;1rkrK ; and a single stochastic process
pt ; tZ0; are considered, where the dynamics are defined by

dpt ¼ μpt dtþσpt dwt ;

dxk ¼ uk dt; ð3Þ
tZ0;1rkrK: Here μ is the drift and σ is the volatility for the
metal price. The terms xkt AR and uk

t AR represent, respectively, the
mine extraction rate and rate change for mine k; 1rkrK , at time
t. We use u to denote “control” throughout the rest of the paper
since it controls the mining rate on the horizon. The process w
denotes a standard Wiener process in R on a sufficiently large
underlying probability space ðΩ;ℱ; PÞ such that w is progressively
measurable with respect to ℱw : ¼ ðℱw

t ; tZ0Þ; thus, the history of
the Wiener process is available at time t.

The initial states are deterministic and known by all agents. It is
assumed that EwwT ¼ 1; and p20o1: Denote the state configura-
tion by x¼ ðx1;⋯; xK ÞT and average state by x¼ ð1=KÞ∑K

k ¼ 1x
k:

The individual discounted quadratic cost function that pena-
lizes a mine's deviation from its target and control action is given
by

Jkðuk;u�kÞ ¼ E

Z 1

0
e�δt qk xkt �Ψ kðpt ; xtÞ

� �2
þrkðuk

t Þ2
� �

dt;

: ¼ E

Z 1

0
e�δt lðxkt ;uk

t Þdt: ð4Þ

Note that even though the horizon extends until 1, the target
Ψ k determines the life of mine. The coefficients qk; rkAR will be
called the cost parameters. The function ukðU Þ is the control input
of the agent Ak;1rkrK; and u�k denotes the control inputs of
the complementary set of agents A�k ¼ fAj : jak;1r jrKg: Note
that each agent's target Ψ k is a dynamic quantity changing in time.
Each mine wants to track its optimal target; however, changing
mining rate is costly and this is reflected through the penalization
of action in the cost function.

2.1. Control actions of individual agents

In this section, the dynamic program that solves optimal
mining rate tracking for system (3) with the cost function (4) is
presented. The existence of a solution to the dynamic program is
shown, its particular form is provided, and the optimal control
action is obtained in analytical form. For the optimality analysis,
first introduce the admissible control set U which consists of all
feedback controls adapted to ℱw

t ; tZ0: In other words, at time t;
action ut is allowed to use all the histories of the disturbance
process up until time t.

In the framework in this paper, the agents are in a relation such
that each agent's behavior evolves as a function of other agents'
states as well as the stochastic process x. Since pt ; tZ0 is a
stochastic process, the interaction is dynamic. Without a loss of
generality, for a system where K ¼ 3, the dynamics of A1, the
evolution of variables that affect its mining rate, may be written in
the form

dx1t
dx2t
dx3t
dpt

2
66664

3
77775¼

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 μ

2
66664

3
77775

x1t
x2t
x3t
pt

2
66664

3
77775dt

þ

1
0
0
0

2
6664

3
7775u1

t dtþ

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

2
6664

3
7775

u1
t

u2
t

u3
t

0

2
6664

3
7775dtþσpt

0
0
0
dwt

2
6664

3
7775

: ¼ Axt dtþB1u1
t dtþM1ut dtþσptð01�3; dwtÞT ð5Þ

Note that xt : ¼ ½x1t ; x2t ; x3t ; pt �T ;ut : ¼ ½u1
t ;u

2
t ;u

3
t ;0�T and the

states of other agents as well as the process pt ; tZ0 are augmen-
ted to the individual state of the agent Ak:

A3: The methodology in this paper accommodates all linear
functions of p and x with a finite number of parameters. Without
a loss of generality it is assumed that Ψ kðp; xÞ is in the form

Ψ kðp; xÞ ¼ χþαkp�βx; ð6Þ
where χ;αk;βAR.

The previous assumption is made for technical reasons in order
to obtain a closed form solution. Note that the dynamic program is
valid without this function; however the following closed form
solutions are not attainable, and numerical PDE analyses are
required. In the remainder of the paper, linearity of the tracking
function will be employed to find a closed form solution to the
dynamic program. For this system, the following definitions are
made:

Q1 : ¼ 1þβ
3
;
β
3
;
β
3
; �α1

� �T

q1 1þβ
3
;
β
3
;
β
3
; �α1

� �
;

η1 : ¼ 1þβ
3
;
β
3
;
β
3
; �α1

� �T

q1χ:

For an initial state x0 and a given u�k : ¼ u�k
τ ;0rτr1, the

value function is defined as

Vðx0;u�k
0 Þ : ¼ inf

uAU
Jkðuk;u�kÞ: ð7Þ

Lemma 2.1. For all 0rtr1; the value function (7) is the solution
to the dynamic program and is given by the Hamilton–Jacobi–
Bellman equation

δV ðxt ;u�k
t Þ� inf

uk
t AU

lðxt ;uk
t Þþ ∂xt V ðxt ;u�k

t Þ� 	T ðAxtþBkuk
t þMkutÞ

n o

�1
2
σ2Tr∂2xxptVðxt ;u�k

t Þ ¼ 0: ð8Þ

The proof is given in Appendix A.

Lemma 2.2. There exists a unique ûkAU such thatJkðûk
;u�kÞ ¼

inf
uk AU

Jkðuk;u�kÞ, and if ~ukAU is another control such that

Jkð ~uk;u�kÞ ¼ Jkðuk;u�kÞ, then ℙΩð ~uka ûkÞ40 only on a set of times
sA ½0;1Þ of Lebesgue measure zero.

The proof is generic and therefore is omitted (Fleming and
Rishel, 1975).

Lemma 2.3. For system (5) the minimum cost-to-go is quadratic in
x; consequently, V can be written in the form

Vðxt ;u�k
t Þ ¼ xTt Π

kðtÞxtþ2xTt s
kðt;u�kÞþqkðtÞ: ð9Þ

The proof is given in Section 2.3 of Anderson and Moore (1989).
We inject (9) in (8) and obtain the optimal action ðukÞn together

with (11) and (12):

ðuk
t Þn ¼ �ðrkÞ�1BkT Πkxtþskt ðu�k

t Þ
h i

; ð10Þ

where

δΠk ¼ΠkAþATΠk�ΠkBkðrkÞ�1BkTΠkþQk; ð11Þ
and

�dskt
dt

¼ ðA�BkðrkÞ�1BkTΠk�δIÞT skt ðu�k
t ÞþΠMkut�ηk: ð12Þ
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Note that even though uk is allowed to observe all the state
space history up until t, the optimal control uses only the current
state and current price; therefore, it is computationally easy to
generate. The algebraic equation (11) is solved offline and at each
time instant the optimal control needs to compute (12). Even
though the solution to the dynamic program is a PDE, (8) and (12)
are ordinary differential equations (ODE) and can be easily solved
backwards in time. Note that even though a closed form exists for
(10), there does not exist a closed form solution for (11) and it
needs to be solved numerically.

3. Coupled systems

The solution to the optimal mining rate tracking was provided
in the previous section; however, each agent's calculation requires
all the rest of the agents' action data. In other words, the individual
optimization problems are coupled; therefore the equations need
to be solved altogether. The first question to answer is the
existence of an action profile to the set of coupled equations. Here
we prove the existence, and the action profile is unique under a set
of conditions. The second question is the existence of a method to
reach this equilibrium. We show in this section that the policy
iteration methodology provides the unique equilibrium, where
there does not exist a unilateral action that provides a smaller cost
for any agent.

The proposed solution is iterative. Agent 1 calculates its
optimal action, then Agent 2 calculates its response, then Agent
3 and so on. The algorithm converges with probability 1 as the
iterations size tends to infinity, and practically the algorithm can
be stopped at some threshold. Note that due to the stochastic
process' presence the trajectories cannot be obtained offline as the
group evolves by reacting to the process pt ; tZ0; which is
continuously subjected to disturbances. For the group, we shall
now specify the coupled equation system:

dxkt ¼ AxtdtþBkuk
t dtþMkutdt 8k;

�dskt
dt

¼ ðA�Bkrk�1BkTΠk�δIÞT skt þΠMkut�η 8k;

uk
t ¼ �rk�1BkT Πkxkt þskt ðu�k

t Þ
h i

8k: ð13Þ

Here we introduce T : Cb½0;1Þ-Cb½0;1Þ; which is the opera-
tor for (13), where Cb denotes the set of all bounded continuous
functions. Hence, we can write (13) as

ut ¼ T ðutÞ;0rtr1:

3.1. Equilibrium

In this section, the equilibrium properties of (13) are analyzed.
At each time instant and at each point in the state space each
agent solves (13). Here we show that the system of equations
regarding the optimal actions of all agents in the system has a
unique solution. We also present the policy iteration procedure
that leads to the unique solution of the system of equations when
applied by all agents in the system. Due to the stochastic process
pt ; tZ0; this procedure is repeated by each agent until the fixed
point is obtained at each time instant.

Theorem 3.1. The map T : Cb½0;1Þ-Cb½0;1Þ has a unique fixed
point which is continuous on ½0;1Þ.

Proof. The existence and uniqueness of a fixed point are guaran-
teed by Banach's fixed point theorem through the continuity of
the operator, completeness of the space of bounded continuous

functions on the infinite interval and provided by the contraction
argument T ðxÞ



 

oγ xj j, where γo1 is satisfied. □

The main result of this section immediately follows Theorem 3.1.

Corollary 1. The equation system (13) admits a unique bounded
solution.

3.2. Policy iteration

The iterative policy of an agent is now considered. At time
tA ½0;1Þ; for a fixed iteration number nZ0 and τA ½t;1Þ, suppose
that there is a priori uτACb½0;1Þ: Then, the best response action of
each agent is in the form uk

τðnþ1Þ ¼ �ðrkÞ�1BkT ½ΠkðxkTτ ; pτÞT þ
skτðuτðnÞÞ�: We get the recursion for u as uτðnþ1Þ ¼ T uτðnÞ: The
procedure can be applied for all trτrT , and the recursion converges
to a unique un

τ ; trτrT : This procedure is independently performed
by each agent in the system at each time instant.

Proposition 3.2. lim
n-1

utðnÞ ¼ un
t where un

t ACb½0;1Þ for all
0rto1:

Proof. It has been shown in Theorem 3.1 that T is a contraction.
Therefore, for any uð0ÞACb, lim

n-1
uðnÞ ¼ unACb follows. □

Before we present the subgame perfect equilibrium theorem,
we employ the technical assumption below:

A4: Agents can use only Markovian strategies, that is, we rule out
equilibria based on future punishments.

A Markovian strategy γi of a player is defined to be a strategy
where for each t; γiðt; xÞ depends on ℱt ; the σ-field generated by
the agents' trajectories and the price process fxkτ ; pτ;0rτr
t;1rkrKg only through t; fxkt ; pt ;1rkrKg:

Let us define Γ to be the class of mappings γ : ½0;1Þ � RKþ1-R
with the property that uðtÞ ¼ γðt; xÞ is adapted toℱ; the σ-field
generated by the agents' trajectories and the price process
fxkτ ; pτ;0rτrt;1rkrKg: Therefore, Γ is more general than
Markovian strategies. A subgame perfect equilibrium of the
dynamic game with the set of agents K with dynamics (3) and
with the cost functions (4) is a strategy profile γnAΓ such that for
any history h, the strategy profile γnjh is a Nash equilibrium of the
subgame based on the history h.

The following corollary follows from Proposition 3.2.

Corollary 2. Within Markovian strategies for agents with dynamics
(3), the action profile obtained when all agents apply (10) at any
tZ0 with the iterative procedure described above is the unique
subgame perfect equilibrium of the game.

The system has a unique equilibrium within Markovian strate-
gies, and the action profile corresponding to the equilibrium can
be obtained by an iterative algorithm applied by each agent. The
equilibrium is shown by use of a fixed point argument, and the
procedure is explained by a policy iteration methodology. At each
time instant each agent considers future evolution, and calculates
the best response action. This procedure leads to the unique best
response profile, and the equilibrium is obtained.

4. Numerical results

4.1. Data calibration

In previous sections a framework for mining rate tracking under
financial uncertainty was provided. For practical implementation in
order to employ the particular function in (3) as the price model,
function parameters need to be calibrated with real data. In this
section maximum likelihood estimates are employed in order to
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estimate the parameters. The Black–Scholes formula uses the log-
normal diffusion which is modeled by geometric Brownian motion
(GBM)

dpt ¼ μpt dtþσpt dwt ; ð14Þ
p040, where μ and σ in (5) are the percentage drift and percentage
volatility respectively.

Ito's lemma is employed to write

d ln Pt ¼ μ�1
2
σ2

� �
dtþσ dwt

¼ α dtþσ dwt : ð15Þ
Maximum likelihood is employed to estimate the non-random

parameters of the geometric Brownian motion in (15). The like-
lihood function is defined as

LðθÞ ¼ f ðx;θÞ;
a function of θ for a fixed value of data x. The maximum likelihood
estimator is defined as

θ̂¼ arg maxθAΘ f ðx;θÞ
¼ arg maxθ LðθÞ
¼ arg maxθ lðθÞ

for any monotonic increasing function lðθÞ of LðθÞ.
One may discretize (14) by the Euler–Maruyama method and

for h40 write

log Pk� log Pk�1 ¼ μ�1
2
σ2

� �
hþ

ffiffiffi
h

p
σNð0;1Þ:

Now, rk is defined as

rkðhÞ : ¼ log
Pk

Pk�1

� �
:

Note that the sequence ðrkÞ is independent and identically
distributed with Nðαh;σ2hÞ. Recall that Gaussian distribution is
specified with the first two orders. We define θ¼ ðα;σ2Þ and the
joint measurement distribution is written as

f ðr;θÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2

p
� �n

exp � 1
2σ2h

∑
n

k ¼ 1
ðrk�αhÞ2

( )
:

Then, after taking the logarithm, it is

log f ðr;ΘÞ ¼ n
2
log ð2πσ2Þ� 1

2σ2h
∑
n

k ¼ 1
r2kþ

1
2σ2h

∑2rkαh

� 1
2σ2h

∑
n

k ¼ 1
α2h2:

We take the first derivatives with respect to α and σ2 and
obtain

α̂¼ 1
nh

∑
n

k ¼ 1
rkðhÞ; ð16Þ

σ̂2 ¼ 1
nh

∑
n

k ¼ 1
rkðhÞ� α̂h
� 	2

: ð17Þ

4.2. Example

In this section a mining complex of three gold mines is simulated
for a single scenario. The optimal mining rate schedule of each mine
will be calculated under the uncertainty of gold price for 20 years.
First, in order to properly model price stochasticity, maximum
likelihood estimates will be obtained for the parameters μ and
σ in (5). Then, using the distributed policy iteration method, the
mining rate schedule is obtained for the three mines.

In Fig. 1 the ounce price of gold from 1978 till 2012 is shown.
Then, (16) and (17) are employed to obtain estimates. In Fig. 2 50

simulations performed using the estimates are presented, and it is
seen that simulations nicely cover the actual price history except
for the very beginning of the history.

The target extraction rate (6) parameters are χ ¼ 100 and β¼ 1
for all three mines and α¼ f1:25;1:5;1:75g. These mines also have
different flexibilities in changing their mining rates; therefore, r
parameters are selected as r¼ f150;125;100g. A single scenario for
20 years horizon is given in Fig. 3. We see that the simulated price
is highly volatile. Each mine calculates its optimal mining rate
using feedback on the gold price and after 20 iterations the
algorithm is stopped. At this point the mines reach an equilibrium,
where each mine establishes its optimal schedule. The optimal
mining rates using the proposed distributed optimal control are
plotted in Fig. 4. The extraction rate of mine 1 is plotted in blue,
mine 2 is plotted in green and mine 3 is plotted in red. It is seen
that mines do not react uniformly to the changes in price. Mines
1 and 2 maintain a more reactive scheduling while mine 3 keeps a
more steady mining rate.

In Fig. 5, for comparison we plot the optimal mining rate of
each mine through individual independent optimization. In this
figure, all three mines monotonically follow the changes in price.
The effect of global distributed approach is clear. It treats the

Fig. 1. Historical gold price chart.

Fig. 2. Gold price simulations using the ML estimates.
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mines in a non-uniform way, where mines with less penalty of
deviation from their target are rewarded with more of the
common resource, which leads to a smaller cost globally.

5. Conclusions

In this paper a mining rate target tracking problem has been
studied, where each mine's extraction target is assumed to be a
function of the stochastic price and other mines' extraction rates.
Since the price process is modeled as a stochastic differential
equation on a continuous horizon, a scenario method would lead
to an optimization problemwith a prohibitive number of variables.
For individual tracking, a dynamic programming approach is
employed and the problem on the continuous horizon is solved.
For parallelization an iterative solution is used, and it is shown
that the iterative method leads to a unique equilibrium.

This paper deals with complexity in two ways. First, we
separate the individual mine scheduling problem from the global
mine extraction rate target problem. The proposed methodology
works on a higher level of hierarchy than the individual optimiza-
tion of a single mine. This is a significant advantage because
individual optimization is itself a stochastic optimization problem
due to the metal content uncertainty. This way we are able to treat
two uncertainties separately. Secondly we take a distributed
approach and instead of trying to solve the target tracking globally,
each mine extraction tracking is done in parallel in an iterative
manner until the iterations converge.

Even though the paper assumes a simple tracking function class,
the proposed method is easily, readily extendible to a more compli-
cated function with a much higher number of parameters. How to
characterize this function and how to calibrate these parameters with
respect to the given data are subjects of future research.
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Appendix A

Proof of Lemma 2.1

Proof. For very small Δt40 we use the identity e�δ Δt � 1�δΔt
and obtain

Vðxt ;u�k
t Þ ¼ inf

ukt AU
lðxt ;uk

t ÞΔtþð1�δ ΔtÞVðxtþΔt ;u
�k
tþΔtÞ

n o
: ð18Þ

For VðxtþΔt ;u�k
tþΔtÞ; Taylor series gives
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t ÞΔtþ∂xV ðxt ;u�k

t ÞΔx

þ1
2
Tr∂2xxptVðxt ;u�k

t ÞðΔxÞ2;

which after applying Ito's rule can be written as

� Vðxt ;u�k
t Þþ∂tVðxt ;u�k

t ÞΔtþ∂xVðxt ;u�k
t ÞðAxtþBkuk

t þMkutÞΔt

þ1
2
σ2Tr∂2xxptVðxt ;u�k

t ÞΔt: ð19Þ

We inject (19) into (18), take Δt-0; and obtain (8). □
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