51 research outputs found
Paraneoplastic thrombocytosis in ovarian cancer
<p>Background: The mechanisms of paraneoplastic thrombocytosis in ovarian cancer and the role that
platelets play in abetting cancer growth are unclear.</p>
<p>Methods: We analyzed clinical data on 619 patients with epithelial ovarian cancer to test associations between platelet counts and disease outcome. Human samples and mouse
models of epithelial ovarian cancer were used to explore the underlying mechanisms
of paraneoplastic thrombocytosis. The effects of platelets on tumor growth and angiogenesis were ascertained.</p>
<p>Results: Thrombocytosis was significantly associated with advanced disease and shortened
survival. Plasma levels of thrombopoietin and interleukin-6 were significantly elevated
in patients who had thrombocytosis as compared with those who did not. In mouse
models, increased hepatic thrombopoietin synthesis in response to tumor-derived
interleukin-6 was an underlying mechanism of paraneoplastic thrombocytosis. Tumorderived interleukin-6 and hepatic thrombopoietin were also linked to thrombocytosis
in patients. Silencing thrombopoietin and interleukin-6 abrogated thrombocytosis in
tumor-bearing mice. Anti–interleukin-6 antibody treatment significantly reduced platelet counts in tumor-bearing mice and in patients with epithelial ovarian cancer. In
addition, neutralizing interleukin-6 significantly enhanced the therapeutic efficacy of
paclitaxel in mouse models of epithelial ovarian cancer. The use of an antiplatelet
antibody to halve platelet counts in tumor-bearing mice significantly reduced tumor
growth and angiogenesis.</p>
<p>Conclusions: These findings support the existence of a paracrine circuit wherein increased production of thrombopoietic cytokines in tumor and host tissue leads to paraneoplastic
thrombocytosis, which fuels tumor growth. We speculate that countering paraneoplastic thrombocytosis either directly or indirectly by targeting these cytokines may have
therapeutic potential. </p>
Therapeutic Targeting of ATP7B in Ovarian Carcinoma.
PURPOSE: Resistance to platinum chemotherapy remains a significant problem in ovarian carcinoma. Here, we examined the biological mechanisms and therapeutic potential of targeting a critical platinum resistance gene, ATP7B, using both in vitro and in vivo models.
EXPERIMENTAL DESIGN: Expression of ATP7A and ATP7B was examined in ovarian cancer cell lines by real-time reverse transcription-PCR and Western blot analysis. ATP7A and ATP7B gene silencing was achieved with targeted small interfering RNA (siRNA) and its effects on cell viability and DNA adduct formation were examined. For in vivo therapy experiments, siRNA was incorporated into the neutral nanoliposome 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC).
RESULTS: ATP7A and ATP7B genes were expressed at higher levels in platinum-resistant cells compared with sensitive cells; however, only differences in ATP7B reached statistical significance. ATP7A gene silencing had no significant effect on the sensitivity of resistant cells to cisplatin, but ATP7B silencing resulted in 2.5-fold reduction of cisplatin IC(50) levels and increased DNA adduct formation in cisplatin-resistant cells (A2780-CP20 and RMG2). Cisplatin was found to bind to the NH(2)-terminal copper-binding domain of ATP7B, which might be a contributing factor to cisplatin resistance. For in vivo therapy experiments, ATP7B siRNA was incorporated into DOPC and was highly effective in reducing tumor growth in combination with cisplatin (70-88% reduction in both models compared with controls). This reduction in tumor growth was accompanied by reduced proliferation, increased tumor cell apoptosis, and reduced angiogenesis.
CONCLUSION: These data provide a new understanding of cisplatin resistance in cancer cells and may have implications for therapeutic reversal of drug resistance
Src activation by β-adrenoreceptors is a key switch for tumor metastasis
Norepinephrine (NE) can modulate multiple cellular functions important for cancer progression; however, how this single extracellular signal regulates such a broad array of cellular processes is unknown. Here, we identify Src as a key regulator of phosphoproteomic signaling networks activated in response to beta-adrenergic signaling in cancer cells. These results also identify a new mechanism of Src phosphorylation that mediates beta-adrenergic/PKA regulation of downstream networks, thereby enhancing tumor cell migration, invasion and growth. In human ovarian cancer samples, high tumoral NE levels were correlated with high pSrcY419 levels. Moreover, among cancer patients, the use of beta blockers was significantly associated with reduced cancer-related mortality. Collectively, these data provide a pivotal molecular target for disrupting neural signaling in the tumor microenvironment
Metronomic Docetaxel in PRINT Nanoparticles and EZH2 Silencing Have Synergistic Antitumor Effect in Ovarian Cancer
The purpose of this study was to investigate the antitumor effects of a combination of metronomic doses of a novel delivery vehicle, PLGA-PRINT nanoparticles containing docetaxel, and anti-angiogenic mEZH2 siRNA incorporated into chitosan nanoparticles. In vivo dose-finding studies and therapeutic experiments were conducted in well-established orthotopic mouse models of epithelial ovarian cancer. Antitumor effects were determined on the basis of reduction in mean tumor weight and number of metastatic tumor nodules in the animals. The tumor tissues from these in vivo studies were stained to evaluate the proliferation index (Ki67), apoptosis index (cleaved caspase 3), and microvessel density (CD31). The lowest dose of metronomic regimen (0.5 mg/kg) resulted in significant reduction in tumor growth. The combination of PLGA-PRINT-docetaxel and CH-mEZH2 siRNA showed significant antitumor effects in the HeyA8 and SKOV3ip1 tumor models (p<0.05). Individual as well as combination therapies showed significant anti-angiogenic, anti-proliferative, and pro-apoptotic effects, and combination therapy had additive effects. Metronomic delivery of PLGA-PRINT-docetaxel combined with CH-mEZH2 siRNA has significant antitumor activity in preclinical models of ovarian cancer
Comparison of Expression Profiles in Ovarian Epithelium In Vivo and Ovarian Cancer Identifies Novel Candidate Genes Involved in Disease Pathogenesis
Molecular events leading to epithelial ovarian cancer are poorly understood but
ovulatory hormones and a high number of life-time ovulations with concomitant
proliferation, apoptosis, and inflammation, increases risk. We identified genes
that are regulated during the estrous cycle in murine ovarian surface epithelium
and analysed these profiles to identify genes dysregulated in human ovarian
cancer, using publically available datasets. We identified 338 genes that are
regulated in murine ovarian surface epithelium during the estrous cycle and
dysregulated in ovarian cancer. Six of seven candidates selected for
immunohistochemical validation were expressed in serous ovarian cancer,
inclusion cysts, ovarian surface epithelium and in fallopian tube epithelium.
Most were overexpressed in ovarian cancer compared with ovarian surface
epithelium and/or inclusion cysts (EpCAM, EZH2, BIRC5) although BIRC5 and EZH2
were expressed as highly in fallopian tube epithelium as in ovarian cancer. We
prioritised the 338 genes for those likely to be important for ovarian cancer
development by in silico analyses of copy number aberration and
mutation using publically available datasets and identified genes with
established roles in ovarian cancer as well as novel genes for which we have
evidence for involvement in ovarian cancer. Chromosome segregation emerged as an
important process in which genes from our list of 338 were over-represented
including two (BUB1, NCAPD2) for which there
is evidence of amplification and mutation. NUAK2, upregulated in ovarian surface
epithelium in proestrus and predicted to have a driver mutation in ovarian
cancer, was examined in a larger cohort of serous ovarian cancer where patients
with lower NUAK2 expression had shorter overall survival. In conclusion,
defining genes that are activated in normal epithelium in the course of
ovulation that are also dysregulated in cancer has identified a number of
pathways and novel candidate genes that may contribute to the development of
ovarian cancer
A Glycemia Risk Index (GRI) of Hypoglycemia and Hyperglycemia for Continuous Glucose Monitoring Validated by Clinician Ratings
BackgroundA composite metric for the quality of glycemia from continuous glucose monitor (CGM) tracings could be useful for assisting with basic clinical interpretation of CGM data.MethodsWe assembled a data set of 14-day CGM tracings from 225 insulin-treated adults with diabetes. Using a balanced incomplete block design, 330 clinicians who were highly experienced with CGM analysis and interpretation ranked the CGM tracings from best to worst quality of glycemia. We used principal component analysis and multiple regressions to develop a model to predict the clinician ranking based on seven standard metrics in an Ambulatory Glucose Profile: very low-glucose and low-glucose hypoglycemia; very high-glucose and high-glucose hyperglycemia; time in range; mean glucose; and coefficient of variation.ResultsThe analysis showed that clinician rankings depend on two components, one related to hypoglycemia that gives more weight to very low-glucose than to low-glucose and the other related to hyperglycemia that likewise gives greater weight to very high-glucose than to high-glucose. These two components should be calculated and displayed separately, but they can also be combined into a single Glycemia Risk Index (GRI) that corresponds closely to the clinician rankings of the overall quality of glycemia (r = 0.95). The GRI can be displayed graphically on a GRI Grid with the hypoglycemia component on the horizontal axis and the hyperglycemia component on the vertical axis. Diagonal lines divide the graph into five zones (quintiles) corresponding to the best (0th to 20th percentile) to worst (81st to 100th percentile) overall quality of glycemia. The GRI Grid enables users to track sequential changes within an individual over time and compare groups of individuals.ConclusionThe GRI is a single-number summary of the quality of glycemia. Its hypoglycemia and hyperglycemia components provide actionable scores and a graphical display (the GRI Grid) that can be used by clinicians and researchers to determine the glycemic effects of prescribed and investigational treatments
Combined anti-angiogenic therapy against VEGF and integrin alphabeta in an orthotopic model of ovarian cancer
Abstract 3436: Mechanisms of paraneoplastic thrombocytosis in ovarian carcinoma
Abstract
Objective: The observation that thrombocytosis (platelet count &gt;450,000/μL) occurs in patients with solid malignancies was made over 100 years ago. However, the underlying mechanisms and clinical implications of paraneoplastic thrombocytosis in epithelial malignancies such as ovarian carcinoma are poorly understood and are the focus of the current study.
Methods: Following IRB approval, clinical parameters and initial complete blood counts (CBC) were evaluated in 608 epithelial ovarian cancer patients. Plasma levels of key megakaryopoietic factors thrombopoietin, IL-1α, IL-3, IL-4, IL-6, IL-11, G-CSF, GM-CSF, stem cell factor, and FLT-3 ligand were assayed in a subset of 150 patients at the time of initial diagnosis with advanced stage, high grade epithelial ovarian cancer using a Luminex immunobead-based cytokine profiling platform. For animal studies, CBCs were measured in control mice as well as syngeneic (2 cell lines) and orthotopic (3 cell lines) mouse models of ovarian cancer. Megakaryocytes in spleen and bone marrow were quantified by bright-field microscopy.
Results: Human study: Thirty-two percent of patients had thrombocytosis at initial diagnosis. Compared to patients with normal platelet counts, women presenting with thrombocytosis were significantly more likely to have advanced stage disease (p=0.013) and poor mean progression-free (1.29 vs 2.73 years, p&lt;0.001) and overall survival (3.01 vs 6.05 years, p&lt;0.001). On multivariate analysis, thrombocytosis remained an independent predictor of decreased overall survival. Plasma levels of megakaryopoietic factors IL-6 and G-CSF significantly correlated with platelet counts (r=0.33, p&lt;0.01 and r=0.18, p=0.03). Animal study: Paraneoplastic thrombocytosis was recapitulated in both syngeneic and orthotopic mouse models of ovarian cancer. Platelet counts were increased by 27-200% in mice bearing invasive ovarian tumors compared to controls (p&lt;0.01) and platelet counts significantly correlated with tumor burden (r=0.61, p&lt;0.05). Thrombocytosis was accompanied by a non-significant increase in leukocytes and decrease in red blood cells. Mean platelet count in the peripheral blood strongly correlated with mean megakaryocyte counts in spleen and bone marrow (r=0.95, p&lt;0.05).
Conclusions: Our data provide additional insight into the clinical significance and etiology of paraneoplastic thrombocytosis in ovarian cancer patients. In vivo studies evaluating the effect of silencing tumor cell production of IL-6 and G-CSF on paraneoplastic thrombocytosis using human-specific siRNA sequences are ongoing. Paraneoplastic thrombocytosis and the interaction between platelets and cancer cells could be targets for developing novel therapeutic strategies.
Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr 3436.</jats:p
- …
