152 research outputs found

    Endocrine and Neuroendocrine Tumors Special Issue—Checkpoint Inhibitors for Adrenocortical Carcinoma and Metastatic Pheochromocytoma and Paraganglioma: Do They Work?

    Get PDF
    Adrenocortical cancer; Checkpoint inhibitors; Metastatic paragangliomaCáncer adrenocortical; Inhibidores de puntos de control; Paraganglioma metastásicoCàncer adrenocortical; Inhibidors de punts de control; Paraganglioma metastàticAdrenocortical cancers and metastatic pheochromocytomas are the most common malignancies originating in the adrenal glands. Metastatic paragangliomas are extra-adrenal tumors that share similar genetic and molecular profiles with metastatic pheochromocytomas and, subsequently, these tumors are studied together. Adrenocortical cancers and metastatic pheochromocytomas and paragangliomas are orphan diseases with limited therapeutic options worldwide. As in any other cancers, adrenocortical cancers and metastatic pheochromocytomas and paragangliomas avoid the immune system. Hypoxia-pseudohypoxia, activation of the PD-1/PD-L1 pathway, and/or microsatellite instability suggest that immunotherapy with checkpoint inhibitors could be a therapeutic option for patients with these tumors. The results of clinical trials with checkpoint inhibitors for adrenocortical carcinoma or metastatic pheochromocytoma or paraganglioma demonstrate limited benefits; nevertheless, these results also suggest interesting mechanisms that might enhance clinical responses to checkpoint inhibitors. These mechanisms include the normalization of tumor vasculature, modification of the hormonal environment, and vaccination with specific tumor antigens. Combinations of checkpoint inhibitors with classical therapies, such as chemotherapy, tyrosine kinase inhibitors, radiopharmaceuticals, and/or novel therapies, such as vaccines, should be evaluated in clinical trials

    Hypoxia-upregulated microRNA-630 targets Dicer, leading to increased tumor progression

    Get PDF
    MicroRNAs (miRNAs) are small RNA molecules that affect cellular processes by controlling gene expression. Recent studies have shown that hypoxia downregulates Drosha and Dicer, key enzymes in miRNA biogenesis, causing a decreased pool of miRNAs in cancer, and resulting in increased tumor growth and metastasis. Here, we demonstrate a previously unrecognized mechanism by which hypoxia downregulates Dicer. We found that miR-630, which is upregulated under hypoxic conditions, targets and downregulates Dicer expression. In an orthotopic mouse model of ovarian cancer, delivery of miR-630 using DOPC nanoliposomes resulted in increased tumor growth and metastasis and decreased Dicer expression. Treatment with the combination of anti-miR-630 and anti-vascular endothelial growth factor antibody in mice resulted in rescue of Dicer expression and significantly decreased tumor growth and metastasis. These results indicate that targeting miR-630 is a promising approach to overcome Dicer deregulation in cancer. As demonstrated in the study, use of DOPC nanoliposomes for anti-miR delivery serves as a better alternative approach to cell line based overexpression of sense or anti-sense miRNAs, while avoiding potential in vitro selection effects. Findings from this study provide a new understanding of miRNA biogenesis downregulation observed under hypoxia and suggest therapeutic avenues to target this dysregulation in cancer

    Environmental stimuli shape microglial plasticity in glioma

    Get PDF
    In glioma, microglia and infiltrating macrophages are exposed to factors that force them to produce cytokines and chemokines, contributing to tumor growth and maintaining a pro-tumorigenic, immunosuppressed microenvironment. We demonstrate that housing glioma-bearing mice in enriched environment (EE) reverts the immunosuppressive phenotype of infiltrating myeloid cells, by modulating inflammatory gene expression. Under these conditions, branching and patrolling activity of myeloid cells is increased, and their phagocytic activity is promoted. Modulation of gene expression depends on interferon-(IFN) g produced by natural killer (NK) cells, disappearing in mice depleted of NK cells or lacking IFN-g, and was mimicked by exogenous interleukin-15 (IL-15). Further, we describe a key role for BDNF produced in the brain of mice housed in EE in mediating the expression of IL-15 in CD11b+ cells. These data define novel mechanisms linking environmental cues to the acquisition of a pro-inflammatory, anti-tumor microenvironment in mouse brain

    Brief Report: Hispanic Patients\u27 Trajectory of Cancer Symptom Burden, Depression, Anxiety, and Quality of Life

    Get PDF
    Background: Anxiety and depression symptoms are known to increase cancer symptom burden, yet little is known about the longitudinal integrations of these among Hispanic/Latinx patients. The goal of this study was to explore the trajectory and longitudinal interactions among anxiety and depression, cancer symptom burden, and health-related quality of life in Hispanic/Latinx cancer patients undergoing chemotherapy. METHODS: Baseline behavioral assessments were performed before starting chemotherapy. Follow-up behavioral assessments were performed at 3, 6, and 9 months after starting chemotherapy. Descriptive statistics, chi-square tests, Fisher\u27s exact tests, and Mann-Whitney tests explored associations among outcome variables. Adjusted multilevel mixed-effects linear regression models were also used to evaluate the association between HADS scores, follow-up visits, FACT-G scale, MDASI scale, and sociodemographic variables. RESULTS: Increased cancer symptom burden was significantly related to changes in anxiety symptoms\u27 scores (adjusted beta^ = 0.11 [95% CI: 0.02, 0.19]. Increased quality of life was significantly associated with decreased depression and anxiety symptoms (adjusted beta^ = -0.33; 95% CI: -0.47, -0.18, and 0.38 adjusted beta^= -0.38; 95% CI: -0.55, -0.20, respectively). CONCLUSIONS: Findings highlight the need to conduct periodic mental health screenings among cancer patients initiating cancer treatment

    SSRI use and clinical outcomes in epithelial ovarian cancer

    Get PDF
    Selective serotonin reuptake inhibitor (SSRI) use is common among ovarian cancer patients. We examined the effect of SSRIs on survival and progression in ovarian cancer patients and effects of 5-HT on ovarian cancer cell (OCC) proliferation. Ovarian cancer patients from a 6-site study between 1994 and 2010 were included. Cox proportional hazards models were used for multivariate analysis. SSRI use was associated with decreased time to disease recurrence (HR 1.3, CI 1.0-1.6, p=0.03), but not overall survival (HR 1.1, CI 0.9-1.3, p=0.56). Compared to normal ovarian cells, most OCCs had elevated 5-HT2A receptor mRNA expression (up to 1600 fold greater expression). Clonogenic survival increased in cells treated with 10 uM (1.6 fold, p<0.001) and 20uM (1.9 fold, p=0.018) 5-HT. Mice receiving 5-HT injections had increases in tumor weight (p=0.07) and nodules (p=0.08) with increased Ki67 expression. Injections with sertraline doubled mean tumor weight in mice (p=0.16). 5-HT and sertraline both increased Ki67 expression in mouse tumors (p < 0.001). Patients using SSRIs had significantly decreased time to disease progression. It is possible that SSRIs alter serotonin levels in the tumor microenvironment, resulting in activation of proliferation pathways. Further characterization of serotonergic pathways in ovarian cancer is recommended to demonstrate safety of these medications

    Paraneoplastic thrombocytosis in ovarian cancer

    Get PDF
    &lt;p&gt;Background: The mechanisms of paraneoplastic thrombocytosis in ovarian cancer and the role that platelets play in abetting cancer growth are unclear.&lt;/p&gt; &lt;p&gt;Methods: We analyzed clinical data on 619 patients with epithelial ovarian cancer to test associations between platelet counts and disease outcome. Human samples and mouse models of epithelial ovarian cancer were used to explore the underlying mechanisms of paraneoplastic thrombocytosis. The effects of platelets on tumor growth and angiogenesis were ascertained.&lt;/p&gt; &lt;p&gt;Results: Thrombocytosis was significantly associated with advanced disease and shortened survival. Plasma levels of thrombopoietin and interleukin-6 were significantly elevated in patients who had thrombocytosis as compared with those who did not. In mouse models, increased hepatic thrombopoietin synthesis in response to tumor-derived interleukin-6 was an underlying mechanism of paraneoplastic thrombocytosis. Tumorderived interleukin-6 and hepatic thrombopoietin were also linked to thrombocytosis in patients. Silencing thrombopoietin and interleukin-6 abrogated thrombocytosis in tumor-bearing mice. Anti–interleukin-6 antibody treatment significantly reduced platelet counts in tumor-bearing mice and in patients with epithelial ovarian cancer. In addition, neutralizing interleukin-6 significantly enhanced the therapeutic efficacy of paclitaxel in mouse models of epithelial ovarian cancer. The use of an antiplatelet antibody to halve platelet counts in tumor-bearing mice significantly reduced tumor growth and angiogenesis.&lt;/p&gt; &lt;p&gt;Conclusions: These findings support the existence of a paracrine circuit wherein increased production of thrombopoietic cytokines in tumor and host tissue leads to paraneoplastic thrombocytosis, which fuels tumor growth. We speculate that countering paraneoplastic thrombocytosis either directly or indirectly by targeting these cytokines may have therapeutic potential. &lt;/p&gt

    Therapeutic Targeting of ATP7B in Ovarian Carcinoma.

    Get PDF
    PURPOSE: Resistance to platinum chemotherapy remains a significant problem in ovarian carcinoma. Here, we examined the biological mechanisms and therapeutic potential of targeting a critical platinum resistance gene, ATP7B, using both in vitro and in vivo models. EXPERIMENTAL DESIGN: Expression of ATP7A and ATP7B was examined in ovarian cancer cell lines by real-time reverse transcription-PCR and Western blot analysis. ATP7A and ATP7B gene silencing was achieved with targeted small interfering RNA (siRNA) and its effects on cell viability and DNA adduct formation were examined. For in vivo therapy experiments, siRNA was incorporated into the neutral nanoliposome 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC). RESULTS: ATP7A and ATP7B genes were expressed at higher levels in platinum-resistant cells compared with sensitive cells; however, only differences in ATP7B reached statistical significance. ATP7A gene silencing had no significant effect on the sensitivity of resistant cells to cisplatin, but ATP7B silencing resulted in 2.5-fold reduction of cisplatin IC(50) levels and increased DNA adduct formation in cisplatin-resistant cells (A2780-CP20 and RMG2). Cisplatin was found to bind to the NH(2)-terminal copper-binding domain of ATP7B, which might be a contributing factor to cisplatin resistance. For in vivo therapy experiments, ATP7B siRNA was incorporated into DOPC and was highly effective in reducing tumor growth in combination with cisplatin (70-88% reduction in both models compared with controls). This reduction in tumor growth was accompanied by reduced proliferation, increased tumor cell apoptosis, and reduced angiogenesis. CONCLUSION: These data provide a new understanding of cisplatin resistance in cancer cells and may have implications for therapeutic reversal of drug resistance

    Src activation by β-adrenoreceptors is a key switch for tumor metastasis

    Full text link
    Norepinephrine (NE) can modulate multiple cellular functions important for cancer progression; however, how this single extracellular signal regulates such a broad array of cellular processes is unknown. Here, we identify Src as a key regulator of phosphoproteomic signaling networks activated in response to beta-adrenergic signaling in cancer cells. These results also identify a new mechanism of Src phosphorylation that mediates beta-adrenergic/PKA regulation of downstream networks, thereby enhancing tumor cell migration, invasion and growth. In human ovarian cancer samples, high tumoral NE levels were correlated with high pSrcY419 levels. Moreover, among cancer patients, the use of beta blockers was significantly associated with reduced cancer-related mortality. Collectively, these data provide a pivotal molecular target for disrupting neural signaling in the tumor microenvironment

    Macrophages Facilitate Resistance to Anti-VEGF Therapy by Altered VEGFR Expression

    Get PDF
    Abstract Purpose: VEGF-targeted therapies have modest efficacy in cancerpatients, butacquiredresistance iscommon. Themechanisms underlying such resistance are poorly understood. Experimental Design: To evaluate the potential role of immune cells in the development of resistance to VEGF blockade, we first established a preclinical model of adaptive resistance to anti-VEGF therapy. Additional in vitro and in vivo studies were carried out to characterize the role of macrophages in such resistance. Results: Using murine cancer models of adaptive resistance to anti-VEGF antibody (AVA), we found a previously unrecognized roleofmacrophagesinsuchresistance.Macrophageswereactively recruited to the tumor microenvironment and were responsible for the emergence of AVA resistance. Depletion of macrophages following emergence of resistance halted tumor growth and prolonged survival of tumor-bearing mice. In a macrophagedeficient mouse model, resistance to AVA failed to develop, but could be induced by injection of macrophages. Downregulation of macrophage VEGFR-1 and VEGFR-3 expression accompanied upregulation of alternative angiogenic pathways, facilitating escape from anti-VEGF therapy. Conclusions: These findings provide a new understanding of the mechanisms underlying the modest efficacy of current antiangiogenesis therapies and identify new opportunities for combinationapproachesforovarianandothercancers. ClinCancerRes; 23(22); 7034–46. �2017 AACR
    corecore