242 research outputs found

    Photon tagged correlations in heavy ion collisions

    Full text link
    A detailed study of various two-particle correlation functions involving photons and neutral pions is presented in proton-proton and lead-lead collisions at the LHC energy. The aim is to use these correlation functions to quantify the effect of the medium (in lead-lead collisions) on the jet decay properties. The calculations are carried out at the leading order in QCD but the next-to-leading order corrections are also discussed. The competition between different production mechanisms makes the connection between the jet energy loss spectrum and the gamma-pi correlations somewhat indirect while the gamma-gamma correlations have a clearer relation to the jet fragmentation properties.Comment: 32 pages, 19 figures. Minor changes, published versio

    Design methodology for the development of variable stiffness devices based on layer jamming transition

    Get PDF
    Variable stiffness mechanisms as Jamming Transition draw huge attention recently in Soft Robotics. This paper proposes a comprehensive design methodology for developing variable stiffness devices based on layer jamming. Starting from pre-existing modelling, we highlight the design parameters that should be considered, extracting them from literature and our direct experience with the phenomenon. Then we validated the methodology applying the design process to previous layer jamming cases presented in literature. The comparison between the results obtained from our methodology and those presented in the analyzed previous works highlights a good predictive capability, demonstrating that this methodology can be used as a valid tool to design variable stiffness devices based on layer jamming transition. Finally, in order to provide the scientific community with an easily usable tool to design variable stiffness structures based on layer jamming transition, we have elaborated a Matlab script that guides the user through the main design parameters implementing the proposed methodology in an interactive process

    Charmonium suppression in p-A collisions at RHIC

    Full text link
    We discuss charmonium production in proton-nucleus collisions at RHIC energies under the assumption of xF and x2 scaling. We find that all the ambiguities due to energy loss are gone at this energy and therefore data will reveal the scaling law, if any. These p-A data will also be crucial to interpret nucleus-nucleus data with respect to a possible formation of a quark gluon plasma because the extrapolations for charmonium production from the present p-A data to RHIC energies, based on the two scaling laws, differ by a factor of four.Comment: 6 pages, 3 figures. New section on shadowing and energy loss, References adde

    Energy Loss Effect in High Energy Nuclear Drell-Yan Process

    Full text link
    The energy loss effect in nuclear matter, which is another nuclear effect apart from the nuclear effect on the parton distribution as in deep inelastic scattering process, can be measured best by the nuclear dependence of the high energy nuclear Drell-Yan process. By means of the nuclear parton distribution studied only with lepton deep inelastic scattering experimental data, measured Drell-Yan production cross sections for 800GeV proton incident on a variety of nuclear targets are analyzed within Glauber framework which takes into account energy loss of the beam proton. It is shown that the theoretical results with considering the energy loss effect are in good agreement with the FNAL E866

    Application of the Two-Scale Model to the HERMES Data on Nuclear Attenuation

    Full text link
    The Two-Scale Model and its improved version were used to perform the fit to the HERMES data for ν\nu (the virtual photon energy) and z (the fraction of ν\nu carried by hadron) dependencies of nuclear multiplicity ratios for π+\pi^+ and π\pi^- mesons electro-produced on two nuclear targets (14^{14}N and 84^{84}Kr). The quantitative criterium χ2\chi ^2 was used for the first time to analyse the results of the model fit to the nuclear multiplicity ratios data. The two-parameter's fit gives satisfactory agreement with the HERMES data. Best values of the parameters were then used to calculate the ν\nu- and zz - dependencies of nuclear attenuation for π0\pi^0, K+^+, K^- and pˉ\bar{p} produced on 84^{84}Kr target, and also make a predictions for ν\nu, z and the Q2^2 (the photon virtuality) - dependencies of nuclear attenuation data for those identified hadrons and nuclea, that will be published by HERMES

    Medium-induced gluon radiation and jet quenching in heavy ion collisions

    Full text link
    In this brief review, I summarize the new developments on the description of gluon radiation by energetic quarks traversing a medium as well as the observable consequences in high-energy heavy ion collisions. Information about the initial state is essential for a reliable interpretation of the experimental results and will also be reviewed. Comparison with experimental data from RHIC and expectation for the future LHC will be given.Comment: 16 pages, 9 postscript figures. Invited brief review for Modern Physics Letters

    GiViP: A Visual Profiler for Distributed Graph Processing Systems

    Full text link
    Analyzing large-scale graphs provides valuable insights in different application scenarios. While many graph processing systems working on top of distributed infrastructures have been proposed to deal with big graphs, the tasks of profiling and debugging their massive computations remain time consuming and error-prone. This paper presents GiViP, a visual profiler for distributed graph processing systems based on a Pregel-like computation model. GiViP captures the huge amount of messages exchanged throughout a computation and provides an interactive user interface for the visual analysis of the collected data. We show how to take advantage of GiViP to detect anomalies related to the computation and to the infrastructure, such as slow computing units and anomalous message patterns.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Gluon Shadowing in DIS off Nuclei

    Full text link
    Within a light-cone quantum-chromodynamics dipole formalism based on the Green function technique, we study nuclear shadowing in deep-inelastic scattering at small Bjorken xB < 0.01. Such a formalism incorporates naturally color transparency and coherence length effects. Calculations of the nuclear shadowing for the \bar{q}q Fock component of the photon are based on an exact numerical solution of the evolution equation for the Green function, using a realistic form of the dipole cross section and nuclear density function. Such an exact numerical solution is unavoidable for xB > 0.0001, when a variation of the transverse size of the \bar{q}q Fock component must be taken into account. The eikonal approximation, used so far in most other models, can be applied only at high energies, when xB < 0.0001 and the transverse size of the \bar{q}q Fock component is "frozen" during propagation through the nuclear matter. At xB < 0.01 we find quite a large contribution of gluon suppression to nuclear shadowing, as a shadowing correction for the higher Fock states containing gluons. Numerical results for nuclear shadowing are compared with the available data from the E665 and NMC collaborations. Nuclear shadowing is also predicted at very small xB corresponding to LHC kinematical range. Finally the model predictions are compared and discussed with the results obtained from other models.Comment: 29 pages including 7 figures; Fig.7 modified, some references and corresponding discussion adde

    Electromagnetic Emission and Energy Loss in the QGP

    Full text link
    I discuss why photon production from the Quark Gluon Plasma (QGP) presents an interesting problem, both experimentally and theoretically. I show how the photon emission rate can be computed under the simplifying assumption that the QGP fully thermalizes. The theoretical issues are very similar to those for jet energy loss; so it should be possible to treat them in a common formalism and relate the predictions of one phenomenon to those of the other.Comment: 8 pages, invited talk at Quark Matter 200

    Next-to-MLLA corrections to single inclusive kt-distributions and 2-particle correlations in a jet

    Get PDF
    The hadronic kt-spectrum inside a high energy jet is determined including corrections of relative magnitude O{\sqrt{\alpha_s}} with respect to the Modified Leading Logarithmic Approximation (MLLA), in the limiting spectrum approximation (assuming an infrared cut-off Q0 =Lambda_{QCD}) and beyond Q_0\ne\Lambda_{QCD}. The results in the limiting spectrum approximation are found to be, after normalization, in impressive agreement with preliminary measurements by the CDF collaboration, unlike what occurs at MLLA, pointing out small overall non-perturbative contributions. Within the same framework, 2-particle correlations inside a jet are also predicted at NMLLA and compared to previous MLLA calculations.Comment: 35 pages and 39 figures. Comments, appendices, figures, references added. Version to appear in Phys. Rev.
    corecore